

Engineering Studies

Stage 6

Syllabus

Original published version updated:

Nov/Dec 1999 — Board Bulletin/Offical Notices Vol 8 No 9 (BOS 67/99)

The Board of Studies owns the copyright on all syllabuses. Schools may reproduce this syllabus in part or in full for bona fide study or classroom purposes only. Acknowledgement of the Board of Studies copyright must be included on any reproductions. Students may copy reasonable portions of the syllabus for the purpose of research or study. Any other use of this syllabus must be referred to the Copyright Officer, Board of Studies NSW. Ph: (02) 9367 8111; fax: (02) 9279 1482.

Material on p 5 from Securing Their Future © NSW Government 1997.

© Board of Studies NSW 1999

Published by Board of Studies NSW GPO Box 5300 Sydney NSW 2001 Australia

Tel: (02) 9367 8111

Internet: http://www.boardofstudies.nsw.edu.au

ISBN 0 7313 4313 1

99266A

Contents

1	The Higher School Certificate Program of Study5			
2	Rationale for Engineering Studies in the Stage 6 Curriculum			
3	Con	tinuum of Learning for Engineering Studies Stage 6 Students	7	
4	Aim		8	
5	Obje	ectives	8	
6	Cou	rse Structure	9	
	6.1	Modules	10	
	6.2	The Engineering Report	11	
7	Obje	ectives and Outcomes	12	
	7.1	Table of Objectives and Outcomes	12	
	7.2	Key Competencies	14	
8	Con	tent: Engineering Studies Stage 6 Preliminary Course	15	
9	Con	tent: Engineering Studies Stage 6 HSC Course	30	
10	Cou	rse Requirements	45	
11	Post	-school Opportunities	46	
12	Asse	essment and Reporting	47	
	12.1	Requirements and Advice	47	
	12.2	Internal Assessment	48	
	12.3	External Examination	48	
	12.4	Board Requirements for the Internal Assessment Mark in Board Developed Courses	49	
	12.5	Assessment Components, Weightings and Tasks	50	
	12.6	HSC External Examination Specifications	52	
	12.7	Summary of Internal and External Assessment	53	
	12.8	Reporting Student Performance Against Standards	54	

1 The Higher School Certificate Program of Study

The purpose of the Higher School Certificate program of study is to:

- provide a curriculum structure which encourages students to complete secondary education;
- foster the intellectual, social and moral development of students, in particular developing their:
 - knowledge, skills, understanding and attitudes in the fields of study they choose
 - capacity to manage their own learning
 - desire to continue learning in formal or informal settings after school
 - capacity to work collaboratively
 - respect for the cultural diversity of Australian society;
- provide a flexible structure within which students can prepare for:
 - further education and training
 - employment
 - full and active participation as citizens;
- provide formal assessment and certification of students' achievements;
- provide a context within which schools also have the opportunity to foster students' physical and spiritual development.

2 Rationale for Engineering Studies in Stage 6 Curriculum

In the 21st century, engineering will continue to be directed towards developing insight and understanding to the provision of infrastructure, goods and services needed for industry and the community.

No longer do engineers only formulate problems, provide solutions and integrate technical understanding. Key responsibilities for the profession now include responsible wealth creation, taking full responsibility of ethical considerations and the aim of sustainability in meeting the needs of society. With such key responsibilities, engineers now place increased importance on areas such as communication, synthesis and analysis of information, management skills and teamwork.

Professional engineering work is concerned with cost-effective, timely, reliable, safe, aesthetically pleasing and environmentally sustainable outcomes as well as maintaining a consciousness of ideals associated with social and ethical responsibilities and service.

Engineering Studies Stage 6 is directed towards the application and advancement of skills associated with mathematics, science and technology and is integrated with business and management. It will provide students with skills, knowledge and understanding associated with a study of engineering, its practices and associated methodologies. The subject promotes environmental, economic and global-awareness, problem-solving ability, engagement with information technology, self-directed learning, communication, management and skills in working as a team.

Engineering Studies Stage 6 is unique in that it develops knowledge and understanding of the profession of engineering. It also provides an opportunity to integrate the science and mathematics disciplines with societal development and change. The syllabus is inclusive of the needs, interests and aspirations of all students and provides opportunities and challenges to deal with engineering concepts.

Students undertaking Engineering Studies will have the opportunity to follow a number of pathways. These include tertiary, vocational education and training, and the world of work. For those following a pathway of further study, the insight and experience associated with a study of engineering will be beneficial in their presumed knowledge of the area of study. Those going into the world of work will benefit from understanding what engineers do, as the work of engineers affects us all.

3 Continuum of Learning for Engineering Studies Stage 6 Students

4 Aim

The aim of Engineering Studies Stage 6 is to develop students' understanding and appreciation of the nature and significance of engineering and its impact on society with an emphasis on the application of engineering methodology.

5 **Objectives**

Students will develop:

- 1. understanding of the scope of engineering and the role of the engineer;
- 2. knowledge and understanding of engineering principles and an appreciation of the responsibilities of engineers in society;
- 3. communication skills appropriate to engineering practices;
- 4. knowledge and understanding of developments in technology and an appreciation of their influence on people and engineering practice;
- 5. management and problem-solving skills in engineering contexts;
- 6. skills in the application of engineering methodology.

6 Course Structure

Engineering Studies Stage 6 comprises a Preliminary course made up of 4 compulsory modules and one elective module, and an HSC course made up of 5 compulsory modules.

Schematic view of Engineering Studies Syllabus Structure

Preliminary Modules HSC Modules *120 Hours Indicative Time *120 Hours Indicative Time ENGINEERING ENGINEERING **APPLICATION MODULE 1 APPLICATION MODULE 1** Household Appliances **Civil Structures** ENGINEERING **ENGINEERING APPLICATION MODULE 2 APPLICATION MODULE 2** Landscape Products Personal and Public Transport ENGINEERING ENGINEERING **APPLICATION MODULE 3 APPLICATION MODULE 3 Braking Systems** Lifting Devices **ENGINEERING FOCUS ENGINEERING FOCUS** MODULE 1 MODULE 1 Bio-Engineering Aeronautical Engineering School-based Elective **ENGINEERING FOCUS** MODULE 2 ENGINEERING Telecommunications **APPLICATION MODULE 4** Engineering OR **ENGINEERING FOCUS MODULE 2**

* Each module is of 24 hours indicative time

6.1 Modules

A module is a discrete unit of study that integrates knowledge and understanding of various elements of engineering.

Types of Modules

Two types of module are used to facilitate learning in the subject. These are **engineering application modules** and **engineering focus modules**.

An engineering application module develops knowledge and understanding of engineering concepts and impacts through the study of engineered products.

An engineering focus module develops a knowledge and appreciation of the role of engineers by emphasising a study of the nature of the engineering profession and the scope of engineering activities in a given field.

Three application modules and one focus module are prescribed for the Preliminary course, together with one module that will be developed as a school-based elective. If a focus module is selected by a school for study as the elective in the Preliminary course, it is to be developed from the engineering fields given below, but must not include any of the prescribed focus modules for the Preliminary and HSC years.

The prescribed focus modules in the Preliminary and HSC courses will be replaced periodically with modules developed from the following list:

- Aerospace Engineering
- Aeronautical Engineering
- Agricultural Engineering
- Automotive Engineering
- Bio-Engineering
- Chemical Engineering
- Civil/Structural Engineering
- Electrical/Electronic Engineering
- Environmental Engineering
- Marine Engineering
- Manufacturing Engineering
- Materials Engineering
- Mechanical Engineering
- Mechatronic Engineering
- Mining Engineering
- Nuclear Engineering
- Telecommunications

6.2 The Engineering Report

In the engineering profession an Engineering Report contributes to the effective management, communication, decision-making and teamwork by providing a synthesis of the various elements that are relevant to a given project. The report can be developed by individuals or different members of a team.

An Engineering Report can be developed for a new project which involves the synthesis of a new design, or it can be prepared as a result of the analysis of an existing engineering application. Engineering Reports may be related to individual components, complex engineered products or engineered systems.

The process of reporting on investigation and practical activities in this subject will be through the preparation of Engineering Reports that must be prepared for each module in the Preliminary and HSC courses. Reports will be less detailed in the Preliminary course than those required for the HSC course. Engineering Reports may include:

- introduction to the purpose of the report
- appropriate research
- analysis/synthesis of related issues
- conclusions and/or recommendations
- references.

The Engineering Reports for the Preliminary course should be based on an analysis of one or more areas of the module content.

Reports developed in the HSC course should encompass a degree of both analysis and synthesis of one or more areas of relevant content, and reflect actual engineering practice.

Each module is to generate at least one Engineering Report. One Engineering Report from the Preliminary course and one from the HSC course must be the result of collaborative work.

7 Objectives and Outcomes

7.1 Table of Objectives and Outcomes

Objectives Students will develop:		Preliminary Course Outcomes A student:		HSC Course Outcomes A student:		
1.	understanding of the scope of engineering and the role of the engineer	P1.1	identifies the scope of engineering and recognises current innovations	H1.1	describes the scope of engineering and critically analyses current innovations	
		P1.2	describes the types of materials, components and processes and explains their implications for engineering development	H1.2	differentiates between properties of materials and justifies the selection of materials, components and processes in engineering	
2.	knowledge and understanding of engineering principles and an appreciation of the responsibilities of	P2.1	explains the relationship between properties, uses and applications of materials in engineering	H2.1	determines suitable properties, uses and applications of materials in engineering	
	engineers in society	P2.2	describes the nature of engineering in specific fields and its importance to society	H2.2	analyses and synthesises engineering applications in specific fields and reports on the importance of these to society	
3.	communication skills appropriate to engineering practices	P3.1	uses mathematical, scientific and graphical methods to solve problems of engineering practice	H3.1	demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering	
		P3.2	develops written, oral and presentation skills and applies these to engineering reports	H3.2	uses appropriate written, oral and presentation skills in the preparation	
		P3.3	applies graphics as a communication tool		reports	
				H3.3	develops and uses specialised techniques in the application of graphics as a communication tool	

Objectives Students will develop:		Preliminary Course Outcomes A student:	HSC Course Outcomes A student:
4.	knowledge and understanding of developments in technology and an appreciation of their influence on people and engineering practice	 P4.1 describes developments in technology and their impact on engineering products P4.2 describes the influence of technological change on engineering and its effect on people P4.3 identifies the social, environmental and cultural implications of technological change in engineering 	 H4.1 investigates the extent of technological change in engineering H4.2 applies knowledge of history and technological change to engineering-based problems H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
5.	management and problem-solving in engineering contexts	 P5.1 demonstrates the ability to work both individually and in teams P5.2 applies management and planning skills related to engineering 	 H5.1 works individually and in teams to solve specific engineering problems and in the preparation of engineering reports H5.2 selects and uses appropriate management and planning skills related to engineering
6.	skills in the application of engineering methodology	 P6.1 applies knowledge and skills in research and problem-solving related to engineering P6.2 applies skills in analysis, synthesis and experimentation related to engineering 	 H6.1 demonstrates skills in research and problem-solving related to engineering H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering

7.2 Key Competencies

Engineering Studies provides a context within which to develop general competencies considered essential for the acquisition of effective, higher-order thinking skills necessary for further education, work and everyday life.

Key competencies are embedded in the Engineering Studies syllabus to enhance student learning. The key competencies of *collecting, analysing and organising* information and communicating ideas and information reflect core processes of inquiry and reporting which are explicit in the objectives and outcomes of Engineering Studies. The other key competencies are developed through the methodologies of the syllabus and through classroom pedagogy. Students work as individuals and as members of groups to conduct investigations into engineered products and systems and through this, the key competencies *planning and* organising activities and working with others and in teams are developed. When students solve problems related to engineering and analyse data they become competent in using mathematical ideas and techniques. When students analyse, synthesise and report on engineered products and systems they will be involved in a specific study and application of a range of technologies and they will develop competency in *using technology*. Finally, the exploration of issues and investigation of the nature of engineered products and systems contributes towards the students' development of the key competency *solving problems*.

8. Content: Engineering Studies Preliminary Course

ENGINEERING APPLICATION MODULE 1

HOUSEHOLD APPLIANCES

24 Hours Indicative Time

Select one or more household appliances as an introduction to Engineering Applications. Possible examples of household appliances include: kettles, ovens, washing machines, refrigerators, cooktops, portable power tools, telephones, irons, vacuum cleaners.

Outcomes

- P1.2 describes the types of materials, components and processes and explains their implications for engineering development
- P2.1 explains the relationship between properties, uses and applications of materials in engineering
- P3.2 develops written, oral and presentation skills and applies these to engineering reports
- P3.3 applies graphics as a communication tool
- P4.1 describes developments in technology and their impact on engineering products
- P4.2 describes the influence of technological change on engineering and its effect on people
- P4.3 identifies the social, environmental and cultural implications of technological change in engineering.

Students learn about		Students learn to:		
Hi: •	storical and societal influences: historical developments of household appliances the effect of engineering innovation on people's lives	 outline historical uses and appropriateness of materials in the design and production of household appliances 		
En hy	gineering mechanics and draulics			
•	mass and force	 use mathematical and/or graphical methods to solve engineering 		
•	scalar and vector quantities	problems in household appliances		
En	gineering materials			
•	classification of materials	classify a variety of materials		
•	properties of materials	• identify the properties of materials		
	 physical and mechanical properties 	and explain the reason for their selection		
•	structure of materials	describe the structure and bonding		
	 atomic structure 	of materials		
	– bonding			
•	metals			
	 ferrous metals including mild steel non-ferrous metals including copper, brass and bronze joining and cutting methods 	 distinguish between and explain reasons for the use of ferrous and non-ferrous metals as components in household appliances compare the suitability of joining and 		
•	polymers	cutting methods used on metals		
	- thermoplastics	 distinguish between thermoplastics and thermosets 		
	- thermosets	• identify the types of ceramics used		
		in household appliances		
En	gineering electricity/electronics			
•	basic principles	• explain the basic electrical principles		
	 potential difference 	of operation appropriate to		
	- current	appreciate the importance of safety		
	 simple circuits and components 	when using electrical household		
	- related Australian electrical	appliances		
	standards	 explain the working of an induction motor 		
•	magnetic induction			

Τ

fundamental AC and DC circuitselectric motors	 distinguish between AC and DC circuits
 Communication freehand sketching research methods including the Internet, CD-ROM and libraries collaborative work practices Engineering Report writing 	 draw freehand, three-dimensional objects conduct research using computer technologies and other resources complete an Engineering Report based on the analysis of one or more household appliances, integrating the use of computer software

ENGINEERING APPLICATION MODULE 2

LANDSCAPE PRODUCTS

24 Hours Indicative Time

Select one or more landscape products as an introduction to Engineering Applications. Possible examples of landscape products include: wheelbarrows, sprinklers, garden implements, garden mulchers, lawn-mowers.

Outcomes

- P1.1 identifies the scope of engineering and recognises current innovations
- P2.1 explains the relationship between properties, uses and applications of materials in engineering
- P3.1 uses mathematical, scientific and graphical methods to solve problems of engineering practice
- P3.2 develops written, oral and presentation skills and applies these to engineering reports
- P3.3 applies graphics as a communication tool
- P4.1 describes developments in technology and their impact on engineering products
- P4.2 describes the influence of technological change on engineering and its effect on people
- P4.3 identifies the social, environmental and cultural implications of technological change in engineering
- P5.1 demonstrates the ability to work both individually and in teams.

Students learn about:	Students learn to:		
Historical and societal influences			
the historical development of landscape products	 discuss the social implications of technological change in engineering as applied to landscape products 		
 the effect of engineering innovation on people's lives 			
 environmental implications from the application of landscape products 			
Engineering mechanics and hydraulics			
 forces nature and type of forces addition of vectors 	 apply mathematical and/or graphical methods to solve problems related to landscape products 		
 space and neebody diagrams resultants and equilibrants transmissibility of forces 3 force rule for equilibrium 	 investigate and interpret the concept of equilibrium in the mechanics of landscape products 		
 moments of a force force/couple systems equilibrium of concurrent forces simple mechanisms – inclined plane, lever, screws, wheel and axle, pulley, gears 	 examine and analyse the function of simple mechanisms 		
Engineering materials			
 modification of materials work hardening heat treatment nature of composites 	 conduct simple tests aimed at improving materials' properties through work hardening, heat treatment and composites 		
engineering applications of materialsrecyclability of materials	 analyse the properties, uses and appropriateness of materials for landscape products 		
 implications for recycling recyclable materials including steel, aluminium, brass, plastics and rubber costs and benefits of recycling 	 explain the benefits of recycling materials 		
materials			
 ortnogonal drawings Australian Standards AS1100 dimensioning materials lists introduction to computer assisted 	 produce orthogonal assembly drawings applying appropriate Australian Standard (AS 1100) 		
drawing (CAD)			

Т

•	research methods including the Internet, CD-ROM and libraries	•	conduct research using computer technologies and other resources
•	collaborative work practices	•	work with others and appreciate the value of collaborative working
•	Engineering Report writing	•	complete an Engineering Report based on the analysis of one or more landscape products, incorporating the use of computer software

ENGINEERING APPLICATION MODULE 3

BRAKING SYSTEMS

24 Hours Indicative Time

Select one or more products related to braking systems as an introduction to Engineering Applications. Possible examples include: the band brake, drum brake, disc brake, multiple disc brakes system and regenerative braking systems.

Outcomes

- P1.1 identifies the scope of engineering and recognises current innovations
- P2.1 explains the relationship between properties, uses and applications of materials in engineering
- P3.1 uses mathematical, scientific and graphical methods to solve problems of engineering practice
- P3.2 develops written, oral and presentation skills and applies these to engineering reports
- P3.3 applies graphics as a communication tool
- P4.1 describes developments in technology and their impact on engineering products
- P4.2 describes the influence of technological change on engineering and its effect on people
- P5.1 demonstrates the ability to work both individually and in teams
- P6.2 applies skills in analysis, synthesis and experimentation related to engineering.

Students learn about:	Students learn to:		
Historical and societal influences			
 historical developments of braking systems the effect of engineering innovations on people's lives environmental implications from the use of materials in braking systems Engineering mechanics and hydraulics friction (without calculations) 	 examine the changing applications of materials to components in braking systems discuss the social implications of technological change in braking systems 		
 stress and strain stress and strain stress (tensile and compression) load/extension diagram strain (tensile and compression) 	 distinguish between force, stress and strain experiment with and apply the basic 		
 work, power, energy (without calculations) fluid mechanics Pascal's and Archimedes' 	 experiment with and apply the basic principles of fluid mechanics to simple braking systems investigate the structure and 		
principles hydrostatic pressure applications to braking systems Engineering materials	properties of appropriate materials used in braking systems		
 materials for braking systems steels cast irons composites manufacturing/forming processes of composites testing of materials 	 describe the manufacturing processes and application of composites to friction materials 		
 tensile and compression test hardness test Communication 	 conduct relevant mechanical tests on materials 		
• pictorial, orthogonal and detail			
 drawings Australian Standard AS1100, including dimensioning graphical mechanics graphical solutions to simple 	 produce pictorial, orthogonal and detail drawings of braking systems and braking components applying appropriate Australian Standard (AS 1100) 		
 mechanical problems computer graphics, computer assisted drawing (CAD) research methods including the Internet, CD-ROM and libraries 	 produce simple computer assisted drawing(s) conduct research using appropriate computer technologies 		

•	collaborative work practices	•	work with others and appreciate the value of collaborative working
•	Engineering Report writing	•	complete an Engineering Report based on the analysis of one type of brake or a component of a braking system, integrating computer software

ENGINEERING FOCUS MODULE

BIO-ENGINEERING

24 Hours Indicative Time

This module will provide an introduction to the study of engineering focus modules.

One or more examples of bio-engineering must be used to develop an understanding of the scope and nature of this profession.

Possible examples include: artificial joints, surgical equipment, artificial limbs, the bionic ear and artificial hearts.

Outcomes

- P1.1 identifies the scope of engineering and recognises current innovations
- P1.2 describes the types of materials, components and processes and explains their implications for engineering development
- P2.2 describes the nature of engineering in specific fields and its importance to society
- P3.1 uses mathematical, scientific and graphical methods to solve problems of engineering practice
- P3.2 develops written, oral and presentation skills and applies these to engineering reports
- P3.3 applies graphics as a communication tool
- P4.1 describes developments in technology and their impact on engineering products
- P4.3 identifies the social, environmental and cultural implications of technological change in engineering
- P5.2 applies management and planning skills related to engineering
- P6.1 applies knowledge and skills in research and problem-solving related to engineering.

Students learn about:		Students learn to:		
Sc • • •	ope of the profession nature and range of work done current projects and innovations health and safety matters training for the profession career prospects relations with the community technologies unique to the profession ethics and engineering engineers as managers	conduct researc range of work do identify the healt relevant to bio-e appraise the trai and career pros debate social an relating to bio-er	h on the nature and one by bio-engineers th and safety issues ngineering ning requirements pects ad ethical issues ngineering	
Hi: • •	storical and societal influences historical background to bio- engineering historical developments of products the effect of bio-engineering on people's lives	discuss the impa engineering on p	act of bio- beople's lives	
En • •	gineering mechanics and hydraulics orders of levers mechanical advantage and velocity ratio stress and strain (tensile and compression forces)	apply mathemat methods to solve engineering prac	ical and/or graphical e problems of bio- ctice	
•	forming materials forming methods – forging – casting – fabrications structure and properties of appropriate materials	describe forming materials used in compare the ma properties of ma engineering.	g processes for n bio-engineering crostructure and terials used in bio-	
•	sectioning of orthogonal drawings Australian Standards AS1100 dimensioning research methods including the Internet, CD-ROM and libraries collaborative work practices	produce orthogo applying approp Standard (AS 11 construct quality work with others value of collabor	onal drawings riate Australian 100) graphical solutions and appreciate the rative working	

Т

•	Engineering Report writing	•	complete an Engineering Report on the bio-engineering profession with reference to:	
			 the nature and range of work done ethics related to the profession 	
		•	apply appropriate technologies to produce a report	

SCHOOL-BASED ELECTIVE MODULE

ENGINEERING APPLICATION MODULE or ENGINEERING FOCUS MODULE

24 Hours Indicative Time

The fifth module in the Preliminary course is a school-based elective module. It may be either an Engineering Application module or an Engineering Focus module.

The module will be determined by the school provided that it is not a duplication of any other module in the Preliminary or HSC courses. It is to be focused on a new product or another field of engineering.

Areas of content which are of particular interest or which need to be reinforced should be addressed in this module. Schools should endeavour to study applications or fields of engineering which hold particular relevance to the local community.

An Engineering Application module can be developed by the school, based on a product that has not been covered in the previous modules, OR an Engineering Focus module can be developed by the school, based on any field of engineering except those already covered in the specified Focus modules.

Outcomes: this module provides an opportunity for teachers to revise, refine or extend students in relation to any of the Preliminary course outcomes.

Stu	udents learn about:	Students learn to:		
Scope of the profession This area would only be included in the content of the course if a Focus module was identified for study. Content relating to the Focus module would include:		identify the field of engi implications issues	scope of the selected neering and describe its on health and safety	
•	nature and range of work done in the identified engineering field	appraise the and the care	er prospects	
•	health and safety matters associated with the identified engineering field training for the profession	identify the particular er	technologies used in the ngineering field	
•	career prospects			
•	relations with the community			
•	technologies unique to the engineering field			
•	ethics and engineering			
• His	engineers as managers storical and societal influences			
•	historical development of the Application or Focus module	recount the of the Applic	historical development cation or Focus	
•	the effects of the Application or Focus on people's lives and living standards	describe the Application lives	e effects of the or Focus on people's	
•	the environmental implications of the Application or Focus			
En	gineering mechanics and hydraulics			
•	mechanics and hydraulics applicable to the Application or engineering field	identify and applicable n topics to the	experiment with nechanics and hydraulics Application or Focus	
		apply mech topics to the	anics and hydraulics Application or Focus	
Eng	gineering materials			
•	materials applicable to the Application or Focus	identify app their proper Focus	licable materials and ties to the Application or	
	applicable to the Application or Focus	describe the properties for	e structure and or materials used in the	
	to the Application or Focus	Application	or Focus	
		investigate a methods of Application	applicable joining materials applied to the or Focus	

Т

 Engineering electricity/electronics concepts of electricity and electronics applicable to the Application or Focus 	 explain electrical concepts used in the Application or Focus identify components and related electrical/electronic hardware to the Application or Focus
Communication	
 orthogonal drawings to AS1100 standards research methods including the Internet, CD-ROM and libraries collaborative work practices Engineering Report writing 	 produce orthogonal drawings applying appropriate Australian Standard (AS 1100) construct quality graphical solutions work with others and appreciate the value of working with others complete an Engineering Report to describe the impact on society of the Application or Focus you have studied, specifically mentioning related environmental issues use appropriate computer software

9 Content: Engineering Studies HSC Course

Engineering application module 1

CIVIL STRUCTURES

24 Hours Indicative Time

Select one or more civil structures in this module. Possible examples of civil structures include: bridges, roads, buildings, community centres, parklands, children's playgrounds and equipment

Outcomes

- H1.2 differentiates between properties of materials and justifies the selection of materials, components and processes in engineering
- H2.1 determines suitable properties, uses and applications of materials in engineering
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H3.3 develops and uses specialised techniques in the application of graphics as a communication tool
- H4.1 investigates the extent of technological change in engineering
- H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
- H5.1 works individually and in teams to solve specific engineering problems and in the preparation of engineering reports
- H6.1 demonstrates skills in research and problem-solving related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

Students learn about:	Students learn to:		
 Historical and societal influences historical developments of civil structures engineering innovation in civil structures and their effect on people's lives construction and processing materials used in civil structures over time environmental implications from the use of materials in civil structures Engineering mechanics and hydraulics 	 outline the history of technological change as applied to civil structures investigate the construction processes and materials used in civil structures from a historical point of view critically examine the impact of civil structures on society and the environment 		
 stress and strain shear stress engineering and working stress yield stress, proof stress, toughness, Young's modulus, Hooke's law, engineering applications factor of safety 	 apply mathematical and/or graphical methods to solve problems related to the design of civil structures 		
 stress/strain diagram truss analysis method of joints method of sections 	 evaluate the importance of the stress/strain diagram in understanding the properties of materials 		
 bending stress induced by point loads only concept of shear force and bending moment shear force and bending moment diagrams concept of neutral axis and outer fibre stress bending stress calculation (second moment of area given) 	 calculate the bending stress on simply supported beams involving vertical point loads only 		
 uniformly distributed loads crack theory crack formation and growth failure due to cracking repair and/or elimination of failure due to cracking 	 describe the effect of uniformly distributed loads on a simple beam, without calculations examine how failure due to cracking can be repaired or eliminated 		

En	gineering materials	
•	testing of materials	 describe basic testing conducted on civil structures
	 x-ray specialised testing of engineering materials and/or systems 	 examine the properties, uses and appropriateness of materials used in civil structures
•	 ceramics structure and property relationship, applications glass cement composites timber concrete (reinforced and prestressed) asphalt laminates geotextiles corrosion corrosive environments dry corrosion, wet corrosion, stress corrosion recyclability of materials 	 make appropriate choices of materials and processes for use in civil structures investigate the structure and property relationships in materials explain the special properties produced by composite materials experiment with simple pre- tensioned and post-tensioned structures evaluate the significance of corrosion problems in civil structures describe methods used for recycling materials when civil structures are replaced
Co	mmunication	
•	Australian Standard AS1100 orthogonal assembly drawings development	 produce orthogonal drawings applying appropriate Australian Standard (AS 1100)
•	 development of transition pieces graphical mechanics 	 apply appropriate computer technology to the preparation of reports
	 graphical solutions to complex engineering problems 	construct the development of non- circular transition pieces
•	computer graphics	 apply graphical methods to the solutions of relevant problems
•	research methods including the Internet, CD-ROM and libraries collaborative work practices	 apply research methods to collect and analyse data work with others and appreciate the value of collaborative working
•	Engineering Report writing	 complete an Engineering Report based on the analysis and synthesis of an aspect of civil structures using appropriate software

Engineering application module 2

PERSONAL and PUBLIC TRANSPORT

24 Hours Indicative Time

Select one or more forms of transport in this module. Possible examples include: the bicycle, motor vehicles, boats, motor cycles, buses, trains, trams.

Outcomes

- H1.2 differentiates between properties of materials and justifies the selection of materials, components and processes in engineering
- H2.1 determines suitable properties, uses and applications of materials in engineering
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H3.3 develops and uses specialised techniques in the application of graphics as a communication tool
- H4.2 applies knowledge of history and technological change to engineering-based problems
- H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
- H5.1 works individually and in teams to solve specific engineering problems and in the preparation of engineering reports
- H6.1 demonstrates skills in research, and problem-solving related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

Students will learn about:	Student learn to:
Historical and societal influence	
 historical developments in transport systems effects of engineering innovation in transport on people's lives 	 investigate the history of technological change related to transport and its impact on society identify design features in the
 construction and processing materials over time environmental effects of transport systems environmental implications from the use of materials in transport 	 engineering of transport systems over time critically examine the impact of developments in transport systems on the environment
Engineering mechanics and hydraulics	
 static friction concept of friction and its use in engineering coefficient of friction 	 apply mathematical and/or graphical methods to solve engineering problems related to transport analyse problems involving static
	friction
- normal lorce	 differentiate between the concepts of
- inction force	energy and power and apply
- angle of static friction	appropriate calculations
- angle of repose	
• energy, power	
 potential energy, kinetic energy, work, power 	
Engineering materials	
 testing of materials 	• explain the properties, uses, testing
– x-ray	and appropriateness of materials
 specialised testing of 	used in transportation
engineering materials and/or	
systems	identify appropriate heat treatment
Heat treatment of ferrous metals	processes
 heat treatment of steels 	 justify appropriate choices for ferrous materials and processes
– annealing	used in transportation parts and
– normalising	systems
 hardening and tempering 	experiment with metals to reinforce
 structure property relationships 	the concepts of heat treatment
structure/property relationship in the material forming processes	• explain the method and applications of various ferrous metal forming
– torging	processes
– rolling	
– casting	
– extrusion	
 powder forming 	

- non-ferrous metals
 - aluminium and its alloys, aluminium silicon, aluminium copper, aluminium siliconmagnesium
 - brass, bronze
 - structure/property relationship
 - annealing, strengthening
- ceramics and glasses
 - semi-conductors
 - laminating and heat treatment of glass
- polymers
 - structure/property relationships and applications
 - engineering textiles
 - manufacturing processes for polymer component

Engineering electricity/electronics

- power generation/distribution
 - electrical energy and power
- AC/DC circuits
- electric motors used in transport systems
 - principles
 - applications
- control technology
 - digital technology

Communication

- freehand sketching, designs, pictorial, orthogonal
- Australian Standard AS1100
- computer graphics, Computer Assisted Drawing applications solving problems
- research methods including the Internet, CD-ROM and libraries
- collaborative work practices
- Engineering Report writing

- justify appropriate choices of nonferrous materials and processes for use in transportation parts and systems based on relevant structure/property relationships
- justify appropriate choices of ceramics and glasses used in transportation parts and systems
- identify the types and function of common semiconductors used in the electronics of the transport industry
- justify appropriate choices of polymers and their manufacturing processes used in transportation parts and systems
- identify the electrical systems used in the transport industry
- investigate the principles and application of electric motors used in the transport industry
- analyse the basic principles of control technology as applied to the transport industry
- explain elementary digital logic
- produce orthogonal drawings applying appropriate Australian Standard (AS 1100)
- produce quality graphics
- apply dimensioning to AS1100 standards
- apply appropriate research methods to collect and analyse data
- work with others and appreciate the value of collaborative working
- complete an Engineering Report based on the analysis and synthesis of an aspect of personal and public transport using appropriate software

Engineering application module 3

LIFTING DEVICES

24 Hours Indicative Time

Select one or more lifting devices in this module. Possible examples include: cranes, jacks, levers, lifts, hydraulic ram, forklifts, block and tackle.

Outcomes

- H1.2 differentiates between properties of materials and justifies the selection of materials, components and processes in engineering
- H2.1 determines suitable properties, uses and applications of materials in engineering
- H3.1 demonstrates proficiency in the use of mathematical, scientific and graphical methods to analyse and solve problems of engineering practice
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H4.1 investigates the extent of technological change in engineering
- H4.2 applies knowledge of history and technological change to engineering-based problems
- H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
- H5.1 works individually and in teams to solve specific engineering problems and in the preparation of engineering reports
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

Students will learn about:	Students learn to:		
 Historical and societal influences historical development of lifting devices engineering innovation in lifting devices and their effect on people's lives 	 research the history of technological change in lifting devices examine the impact of lifting devices on engineering construction methods 		
 Engineering mechanics and hydraulics conditions of equilibrium for non-concurrent coplanar forces fluid mechanics Archimedes' and Pascal's principles hydrostatic pressure applications to lifting devices 	 use mathematical and/or graphical methods to solve problems related to lifting devices apply concepts of hydraulics in the solution of problems relating to types of lifting devices 		
 Engineering materials testing of materials used in lifting devices tension, compression hardness impact structure/property relationships in heat treatment processes normalising hardening and tempering structure/property relationships in forming processes forging casting extrusion rolling powder forming 	 describe the properties, uses and appropriateness of materials used in lifting devices evaluate manufacturing processes for components used in lifting devices investigate impact testing experiment with and assess structure/property relationships, before and after heat treatment analyse the structure/property relationship developed through forming processes 		
 Engineering electricity/electronics applications found in appropriate lifting devices motors motor control electrical safety 	 describe the basic principles and applications of electrical components to lifting devices 		

Т

Comr	munication		
 Au se or cc as 	ustralian Standard AS1100 ectioning of orthogonal views thogonal assembly drawings omputer graphics/computer ssisted drawing	•	produce orthogonal drawings applying appropriate Australian Standard (AS 1100) apply dimensions to AS1100 standard
 re In wo ap Er 	esearch methods including the ternet, CD-ROM and libraries ork collaboratively when opropriate ngineering Report writing	•	work with others and appreciate the value of collaborative working complete an Engineering Report based on the analysis and synthesis of an aspect of lifting devices using appropriate software and computer assisted drawing

ENGINEERING FOCUS MODULE 1

AERONAUTICAL ENGINEERING

24 Hours Indicative Time

One or more examples of aeronautical engineering must be used to develop an understanding of the scope and nature of this profession.

Possible examples include:

design and construction of recreational aircraft, general aviation aircraft, military aircraft, agricultural aircraft, helicopters and home-built aircraft.

Outcomes

- H1.1 describes the scope of engineering and critically analyses current innovations
- H1.2 differentiates between properties of materials and justifies the selection of materials, components and processes in engineering
- H2.2 analyses and synthesises engineering applications in specific fields and reports on the importance of these to society
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H4.1 investigates the extent of technological change in engineering
- H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
- H5.2 selects and uses appropriate management and planning skills related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

St	udents learn about:	Students learn to:
Sc	ope of the profession	
•	nature and scope of the aeronautical engineering profession	 define the responsibilities of the aeronautical engineer
•	current projects and innovations	• describe the nature and range of
•	health and safety issues	work done in this profession
•	training for the profession	examine projects and innovations
•	career prospects	from within the aeronautical
•	unique technologies in the	profession
	protession	 analyse the training and career prospects within aeronautical
		engineering
	engineers as managers	5 5
ч Ці,	storical and sociotal influences	
	historical developments in	
	aeronautical engineering	 research the history of flight in
•	the effects of aeronautical innovation	Australia and understand the way it
	on people's lives and living	has impacted on people's lives
	standards	examine safety issues related to
•	environmental implications of flight	flight and flying
En	gineering mechanics and hydraulics	
•	forces – lift drag, weight, thrust	
•	basic aerodynamics	apply mathematical and graphical
	– Bernouli's principle	methods to solve flight-related
•	bending stress – airframes	problems
•	propulsion systems (jet, turboprop)	outline Bernoull's principle as applied to flight
•	fluid mechanics	 investigate the nature and effect of
	 hydrostatic and dynamic pressure 	bending stresses, applying
	- applications to aircraft	appropriate mathematical methods
	 application to aircraft instruments 	apply mathematical methods to
En	gineering materials	solve hydraulics-related problems
•	specialised testing of aircraft	
	materials	
	 dye penetrant 	describe non-destructive tests used
	– x-ray	with aircraft materials and
	 magnetic particles 	components
	– ultrasonic	
•	aluminium and its alloys used in aircraft	 analyse structure, properties, uses and appropriateness of materials in
	 aluminium silicon, aluminium silicon – magnesium, aluminium copper 	aeronautical engineering applications

- structure/property/application relationships
- heat treatment of applicable alloys
- polymers
 - structure/property relationships and applications
 - modifying materials for aircraft applications
 - engineering textiles
- composites
 - types and applications in aircraft
 - structure/property relationships
- corrosion
 - common corrosion mechanisms in aircraft structures
 - pit and crevice corrosion
 - stress corrosion

Communication

- freehand and technical drawing
 - pictorial and orthogonal projections
- Australian Standard AS1100
- graphical mechanics
 - graphical solution to basic aerodynamic problems
- computer graphics, computer assisted drawing (CAD)
- research methods including the Internet, CD-ROM and libraries
- collaborative work practices
- Engineering Report writing

- investigate the effects of heat treatment on the structure and properties of aluminium alloys
- select and justify materials and processes used in aeronautical engineering

- outline the mechanism of corrosion common to aircraft components
- produce orthogonal drawings applying appropriate Australian Standard (AS 1100)
- construct quality graphical solutions
- work with others and appreciate the value of collaborative working
- complete an Engineering Report on the aeronautical engineering profession with reference to the following aspects:
 - current projects and innovations
 - heath and safety issues
 - relations with the community
 - career prospects

ENGINEERING FOCUS MODULE 2

TELECOMMUNICATION

24 Hours Indicative Time

One or more examples of telecommunication engineering must be used to develop an understanding of the scope and nature of this profession.

Possible examples include:

telephone systems (fixed and mobile), radio systems, television systems and satellite communication systems.

Outcomes

- H1.1 describes the scope of engineering and critically analyses current innovations
- H1.2 differentiates between properties of materials and justifies the selection of materials, components and processes in engineering
- H2.2 analyses and synthesises engineering applications in specific fields and reports on the importance of these to society
- H3.2 uses appropriate written, oral and presentation skills in the preparation of detailed engineering reports
- H4.1 investigates the extent of technological change in engineering
- H4.3 appreciates social, environmental and cultural implications of technological change in engineering and applies them to the analysis of specific problems
- H5.2 selects and uses appropriate management and planning skills related to engineering
- H6.2 demonstrates skills in analysis, synthesis and experimentation related to engineering.

Students learn about:	Students learn to:		
 Scope of the profession nature and scope of telecommunications engineering health and safety issues training for the profession career prospects relations with the community technologies unique to the profession legal and ethical implications engineers as managers current applications and innovations 	 define the responsibilities of the telecommunications engineer describe the nature and range of work done in this profession examine projects and innovations in the telecommunications profession analyse the training and career prospects within telecommunications engineering 		
 historical development within the telecommunications industry the effect of telecommunication engineering innovation on people's lives materials and techniques used over time Engineering materials specialised testing voltage, current, insulation copper and its alloys used in telecommunications structure/property relationships ceramics as insulation materials semiconductors types and uses in telecommunications polymers 	 research the history of technological change in the field of telecommunications describe the nature of engineering systems in the telecommunications field and the importance of this to society analyse structure, properties, uses and appropriateness of materials in telecommunications engineering applications select and justify materials and processes used in telecommunications engineering 		
 insulation materials fibre-optics types and applications Engineering electricity/electronics telecommunications analogue and digital systems modulation, demodulation radio transmission (AM, FM) television transmission (B/W, colour) telephony – fixed and mobile transmission media – cable, microwave, fibre-optics 	 describe the basic concepts and applications of modulation and transmission systems in telecommunications distinguish the communication bands in the electromagnetic spectrum contrast the differences in transmission media 		

• satellite communication systems, geostations

Communication

- freehand and technical drawing, pictorial and dimensioned orthogonal drawings
- Australian Standard AS1100
- computer graphics, computer assisted drawing (CAD)
 - for use in the presentation of reports
 - in the solution of problems
- collaborative work practices
- research methods including the Internet, CD-ROM and libraries
- Engineering Report writing

- describe the basic principles of satellite communication systems
- produce orthogonal drawings applying appropriate Australian Standard (AS 1100)
- apply dimensions to drawings to AS1100 standard
- justify graphics as a communication tool for telecommunications engineering
- work with others and appreciate the value of collaborative working
- complete an Engineering Report on the telecommunications engineering profession with reference to the following aspects:
 - nature and range of work done
 - engineers as managers
 - technologies unique to the profession
 - career prospects
 - training for the profession
 - use of appropriate software and presentation techniques

10 Course Requirements

The Engineering Studies Stage 6 syllabus includes a Preliminary course of 120 hours (indicative time) and a HSC course of 120 hours (indicative time).

There is no prerequisite study for the Preliminary course. Completion of the Preliminary course is a prerequisite for study of the HSC Course.

The Preliminary course consists of five modules including a school-based elective module. The school-based elective module may be studied as either an Engineering Application or Engineering Focus module. It may be studied at any time during the Preliminary course in order to revise or extend content of particular interest.

The HSC course consists of five modules comprising three Engineering Application modules and two Engineering Focus modules. Each module is compulsory.

An Engineering Report is required for each Preliminary and HSC course module.

11 Post-school Opportunities

The study of Engineering Studies Stage 6 provides students with knowledge, understanding and skills that form a valuable foundation for a range of courses at university and other tertiary institutions.

In addition, the study of Engineering Studies Stage 6 assists students to prepare for employment and full and active participation as citizens. In particular, there are opportunities for students to gain recognition in vocational education and training. Teachers and students should be aware of these opportunities.

Recognition of Student Achievement in Vocational Education and Training (VET)

Wherever appropriate, the skills and knowledge acquired by students in their study of HSC courses should be recognised by industry and training organisations. Recognition of student achievement means that students who have satisfactorily completed HSC courses will not be required to repeat their learning in courses in TAFE NSW or other Registered Training Organisations (RTOs).

Registered Training Organisations, such as TAFE NSW, provide industry training and issue qualifications within the Australian Qualifications Framework.

The degree of recognition available to students in each subject is based on the similarity of outcomes between Higher School Certificate courses and industry training packages endorsed within the Australian Qualifications Framework (AQF). Training packages are documents that link an industry's competency standards to AQF qualifications. More information about industry training packages can be found on the National Training Information Service (NTIS) website (www.ntis.gov.au).

Recognition by TAFE NSW

TAFE NSW conducts courses in a wide range of industry areas, as outlined each year in the *TAFE NSW Handbook*. Under current arrangements, the recognition available to students of Engineering Studies in relevant courses conducted by TAFE is described in the *HSC/TAFE Credit Transfer Guide*. This guide is produced by the Board of Studies and TAFE NSW and is distributed annually to all schools and colleges. Teachers should refer to this guide and be aware of the recognition available to their students through the study of Engineering Studies Stage 6. This information can be found on the TAFE NSW website (www.tafensw.edu.au/mchoice).

Recognition by other Registered Training Organisations

Students may also negotiate recognition into a training package qualification with another Registered Training Organisation. Each student will need to provide the RTO with evidence of satisfactory achievement in Engineering Studies Stage 6 so that the degree of recognition available can be determined.

12 Assessment and Reporting

12.1 Requirements and Advice

The information in this section of the syllabus relates to the Board of Studies requirements for assessing and reporting achievement in the Preliminary and HSC courses for the Higher School Certificate.

Assessment is the process of gathering information and making judgements about student achievement for a variety of purposes.

In the Preliminary and HSC courses those purposes include:

- assisting student learning
- evaluating and improving teaching and learning programs
- providing evidence of satisfactory achievement and completion in the Preliminary course
- providing the Higher School Certificate results.

Reporting refers to the Higher School Certificate documents received by students that are used by the Board to report both the internal and external measures of achievement.

NSW Higher School Certificate results will be based on:

- **an assessment mark** submitted by the school and produced in accordance with the Board's requirements for the internal assessment program
- an examination mark derived from the HSC external examinations.

Results will be reported using a course report containing a performance scale with bands describing standards of achievement in the course.

The use of both internal assessment and external examinations of student achievement allows measures and observations to be made at several points and in different ways throughout the HSC course. Taken together, the external examinations and internal assessment marks provide a valid and reliable assessment of the achievement of the knowledge, understanding and skills described for each course.

Standards Referencing and the HSC Examination

The Board of Studies will adopt a standards-referenced approach to assessing and reporting student achievement in the Higher School Certificate examination.

The standards in the HSC are:

- the knowledge, skills and understanding expected to be learned by students the syllabus standards
- the levels of achievement of the knowledge, skills and understanding the *performance standards*.

Both *syllabus standards* and *performance standards* are based on the aims, objectives, outcomes and content of a course. Together they specify what is to be learned and how well it is to be achieved.

Teacher understanding of standards comes from the set of aims, objectives, outcomes and content in each syllabus together with:

- the performance descriptions that summarise the different levels of performance of the course outcomes
- HSC examination papers and marking guidelines
- samples of students' achievement on assessment and examination tasks.

12.2 Internal Assessment

The internal assessment mark submitted by the school will provide a summation of each student's achievements measured at points throughout the course. It should reflect the rank order of students and relative differences between students' achievements.

Internal assessment provides a measure of a student's achievement based on a wider range of syllabus content and outcomes than may be covered by the external examination alone.

The assessment components, weightings and task requirements to be applied to internal assessment are identified on page 51. They ensure a common focus for internal assessment in the course across schools, while allowing for flexibility in the design of tasks. A variety of tasks should be used to give students the opportunity to demonstrate outcomes in different ways and to improve the validity and reliability of the assessment.

12.3 External Examination

In Engineering Studies Stage 6 the external examination is a written paper. The specifications for the examination in Engineering Studies Stage 6 are on page 52.

The external examination provides a measure of student achievement in a range of syllabus outcomes that can be reliably measured in an examination setting.

The external examination and its marking and reporting will relate to syllabus standards by

- providing clear links to syllabus outcomes
- enabling students to demonstrate the levels of achievement outlined in the course performance scale
- applying marking guidelines based on established criteria.

12.4 Board Requirements for the Internal Assessment Mark in Board Developed Courses

For each course the Board requires schools to submit an assessment mark for each candidate.

The collection of information for the HSC internal assessment mark must not begin prior to the completion of the Preliminary course.

The Board requires that the assessment tasks used to determine the internal assessment mark must comply with the components, weightings and types of tasks specified in the table on page 51.

Schools are required to develop an internal assessment program which:

- specifies the various assessment tasks and the weightings allocated to each task
- provides a schedule of the tasks designed for the whole course.

The school must also develop and implement procedures to:

- inform students in writing of the assessment requirements for each course before the commencement of the HSC course
- ensure that students are given adequate written notice of the nature and timing of assessment tasks
- provide meaningful feedback on students' performance in all assessment tasks.
- maintain records of marks awarded to each student for all assessment tasks
- address issues relating to illness, misadventure and malpractice in assessment tasks
- address issues relating to late submission and non-completion of assessment tasks
- advise students in writing if they are not meeting the assessment requirements in a course and indicate what is necessary to enable the students to satisfy the requirements
- inform students about their entitlements to school reviews and appeals to the Board
- conduct school reviews of assessments when requested by students
- ensure that students are aware that they can collect their Rank Order Advice at the end of the external examinations at their school.

12.5 Assessment Components, Weightings and Tasks

Preliminary Course

The components, suggested weightings and tasks for the Preliminary course are set out below.

Components	Weighting	Suggested Tasks
		 Assessment tasks might include
Scope of the profession	10	class tests examinations
Knowledge of engineering principles	40	site visit reports interview reports
Communication skills	20	practical applications
Understanding the impacts of engineering	10	
Management and problem- solving	10	
The application of engineering methodology	10	
Total	100	

Engineering Reports must be allocated 25% of the total school assessment based on the range of assessment components.

HSC Course

The components, weightings and suggested tasks for the HSC course are set out below.

Components	Weighting	Suggested Tasks
		 Assessment tasks might include
Scope of the profession	20	class tests examinations
Knowledge of engineering principles	40	site visit reports interview reports
Communication skills	10	practical applications
Understanding the impacts of engineering	10	
Management and problem- solving	10	
The application of engineering methodology	10	
Total	100	

Engineering Reports must be allocated 35% of the total school assessment based on the range of assessment components.

The internal assessment mark for Engineering Studies Stage 6 is to be based on the HSC course only. Final assessment should be based on a range and balance of assessment instruments.

One task may be used to assess several components. It is suggested that 3–5 tasks are sufficient to assess the HSC course outcomes.

12.6 HSC External Examination Specifications

The written examination in Engineering Studies will consist of an examination paper of 3 hours duration (plus 5 minutes reading time).

The written paper is divided into THREE sections.

Section I (10 marks)

- All questions are compulsory
- There will be TEN multiple-choice questions
- These questions will be based on application modules

Section II (70 marks)

- All questions are compulsory
- There will be SIX questions
- Each question will consist of a number of parts requiring short structured responses
- There will be one question, worth *10 marks*, based on historical and societal influence and the scope of the profession
- There will be THREE questions, worth *10 marks* each, based on application modules
- There will be TWO questions, worth *15 marks* each, based on focus modules

Section III (20 marks)

- All questions are compulsory
- Each question will consist of a number of parts requiring short structured responses
- There will be TWO questions, worth *10 marks* each, based on all modules and Engineering Reports.

12.7 S	Summary of	of Exterr	al and In	nternal A	Assessment
--------	------------	-----------	-----------	-----------	------------

External Assessment	Weighting	Internal Assessment	Weighting Prelim	Weighting HSC
A written examination consisting of THREE parts. All questions are compulsory Section I – Multiple choice. There will be ten questions relating to	10	Tasks relating to module content exclusive of the Engineering Report	75	65
 Section II There will be six short structured response questions There will be one question worth 10 marks, based on historical and societal influences and the scope of the profession There will be three questions worth 10 marks each based on application modules There will be two questions worth 15 marks each based on focus modules 	70	Engineering Reports are integral to this course and contribute to student communication skills. They are also an effective vehicle for assessing many course objectives	25	35
Section III – There will be two short structured response questions worth <i>10 marks</i> each. Both questions are based on all modules and the Engineering Report	20			
	100		100	100

12.8 Reporting Student Performance Against Standards

Student performance in an HSC course will be reported against standards on a course report. The course report includes a performance scale for the course describing levels (bands) of achievement, an HSC examination mark and the internal assessment mark. It will also show, graphically, the statewide distribution of examination marks of all students in the course.

Each band on the performance scale (except for band 1) includes descriptions that summarise the attainments typically demonstrated in that band.

The distribution of marks will be determined by students' performances against the standards and not scaled to a predetermined pattern of marks.