	gineering Studies											
L11,	gilleering Studies						С	entre	e Nu	mber		
Sect	tion II (continued)											
							Stı	ıden	t Nu	mber		
									M	arks		
Que	estion 13 — Personal and Public Transport (19) ma	rks)									
A ra	ilway track has rails made of 0.8% carbon steel.											
(a)	The surface of the rails has been induction heated and water quenched. Describe the final structure and properties of the rail.											
		• • • • • • •	•••••	•••••	•••••	•••••	•••••		•			
		•••••	••••••	•••••	•••••	•••••	•••••	•••••				
		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•			
		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•			
(b)	A suburban train weighing 400 tonnes has to climb a gradient of 1 in 50 at a constant velocity of 60 km per hour.											
	If the power required to overcome rolling resistance at this velocity is 450 kW, calculate the overall power needed to climb the gradient.											
]	Powe	er = .									

Question 13 continues on page 16

350 - 15 -

Questi	on 13	(continued)	Marks
(c)	(i)	Describe how an electric motor is used to convert electricity into rotary motion.	2
	(ii)	Describe TWO different applications of electrical motors that are used in transport systems.	2

End of Question 13