
Software Design and
Development

Stage 6

Syllabus

http://www.boardofstudies.nsw.edu.au

The Board of Studies owns the copyright on all syllabuses. Schools may reproduce
this syllabus in part or in full for bona fide study or classroom purposes only.
Acknowledgement of the Board of Studies copyright must be included on any
reproductions. Students may copy reasonable portions of the syllabus for the
purpose of research or study. Any other use of this syllabus must be referred to the
Copyright Officer, Board of Studies NSW. Ph: (02) 9367 8111; fax: (02) 9279 1482.

Material on p 5 from Securing Their Future © NSW Government 1997.

© Board of Studies NSW 1999

Published by
Board of Studies NSW
GPO Box 5300
Sydney NSW 2001
Australia

Tel: (02) 9367 8111

Internet: http://www.boardofstudies.nsw.edu.au

ISBN 0 7313 4290 9

99278

Contents
1 The Higher School Certificate Program of Study ...5

2 Rationale for Software Design and Development in the Stage 6 Curriculum6

3 Continuum of Learning for Software Design and Development Stage 6 Students...7

4 Aim..8

5 Objectives ...8

6 Course Structure...9

7 Objectives and Outcomes...11

7.1 Table of Objectives and Outcomes ..11

7.2 Key Competencies ...13

8 Content: Software Design and Development Stage 6 Preliminary Course........14

8.1 Concepts and Issues in the Design and Development of Software14

8.2 Introduction to Software Development...20

8.3 Developing Software Solutions ..29

9 Content: Software Design and Development Stage 6 HSC Course31

9.1 Development and Impact of Software Solutions..31

9.2 Software Development Cycle...35

9.3 Developing a Solution Package ...49

9.4 Options ...52

10 Course Requirements...56

11 Post-school Opportunities...57

12 Assessment and Reporting ..58

12.1 Requirements and Advice ..58

12.2 Internal Assessment...59

12.3 External Examination ...59

12.4 Board Requirements for the Internal Assessment Mark in Board
Developed Courses..60

12.5 Assessment Components, Weightings and Tasks61

12.6 HSC External Examination Specifications ...62

12.7 Summary of Internal and External Assessment...63

12.8 Reporting Student Performance Against Standards64

13 Glossary..65

1 The Higher School Certificate Program of Study

The purpose of the Higher School Certificate program of study is to:
• provide a curriculum structure which encourages students to complete

secondary education;
• foster the intellectual, social and moral development of students, in particular

developing their:
– knowledge, skills, understanding and attitudes in the fields of study they

choose
– capacity to manage their own learning
– desire to continue learning in formal or informal settings after school
– capacity to work together with others
– respect for the cultural diversity of Australian society;

• provide a flexible structure within which students can prepare for:
– further education and training
– employment
– full and active participation as citizens;

• provide formal assessment and certification of students’ achievements;
• provide a context within which schools also have the opportunity to foster

students’ physical and spiritual development.

5

Software Design and Development Stage 6 Syllabus

2 Rationale for Software Design and Development in the
Stage 6 Curriculum

For the purposes of the Software Design and Development Stage 6 Syllabus,
software design and development refers to the creativity, knowledge, values and
communication skills required to develop computer programs. The subject provides
students with a systematic approach to problem-solving, an opportunity to be
creative, excellent career prospects and interesting content. Software development
is a distinctive field within the Computing discipline. Stage 6 students who wish to
move into this field are at an advantage if they understand the field.

There are many different approaches that can be taken to develop software. An
understanding of these and the situations in which they are applied is essential in
software development. So too is an understanding of how hardware and software
are interrelated and need each other to function. In order to develop solutions that
meet the needs of those who will use them, communication, personal and team
skills are required by the developers. Together, these considerations provide the
basis for the course.

Computing is an area of rapid growth and change. While a variety of computer
applications are used in this subject, they are not the primary focus. The focus of
this subject is the development of computer-based solutions that require the design
of computer software.

Students interested in the fields of software development and computer science will
find this subject of value. The subject is not only for those who seek further study or
careers in this field, but also for those who wish to understand the underlying
principles of software design and development. Students with software development
skills wishing to acquire team and communication skills will find this subject useful.

The subject is intended for both genders. The computing field, particularly in the
area of software design and development, offers opportunities for creativity and
problem-solving and a collaborative work environment where working with people
and exploring issues is an integral part of the job. It is critical that students of both
genders have the knowledge, understanding and skills necessary to pursue the
many new, exciting and highly paid employment opportunities that exist in the field.

Software Design and Development promotes intellectual, social and ethical growth
in students. The subject has been developed from an area of identified student
interest. It provides them with the flexibility to be able to adapt in a field that is
constantly changing, yet vital to the Australian economy. On completion, the subject
provides students with options in the workforce, TAFE and university study. Study of
this subject will enable students to take part in debates on software development in
society. To this end, Software Design and Development contributes to the overall
purpose of the Stage 6 curriculum.

Software Design and Development Stage 6 Syllabus

6

3 Continuum of Learning for Software Design and
Development Stage 6 Students

Workplace University TAFE Other

Stage 6

VET:
Information
Technology
Curriculum
Framework

Stage 6

Information
Processes
and
Technology

Stage 6

Software
Design and
Development

Stages 5

Computing
Studies
(Elective)

Stages 4–5

Design and Technology (Mandatory)
(50 hours mandatory computing)

Stages 1–3

Science and Technology

Pathways for students who undertake Stage 6
Computing Studies subjects

7

Software Design and Development Stage 6 Syllabus

and/or and/or

E
xperiences in using various softw

are types and learning about applications
and im

plications of com
puter-based technologies across all key learning areas

4 Aim

The Software Design and Development Stage 6 Syllabus is designed to develop in
students the knowledge, understanding, skills and values to solve problems through
the creation of software solutions.

5 Objectives

Students will develop:
1. knowledge and understanding about how software solutions utilise and interact

with other elements of computer systems
2. knowledge and understanding of the historical developments that have led to

current practices in software design and development, and of emerging trends
and technologies in this field

3. knowledge and understanding of legal, social and ethical issues and their effect
on software design and development

4. skills in designing and developing software solutions
5. skills in management appropriate to the design and development of software

solutions
6. skills in teamwork and communication associated with the design and

development of software solutions.

Software Design and Development Stage 6 Syllabus

8

9

Software Design and Development Stage 6 Syllabus

Preliminary Course

Core strands (100% total time)

Concepts and Issues in the Design
and Development of Software 30%
• Social and ethical issues
• Hardware and software
• Software development approaches

Introduction to Software
Development 50%
• Defining the problem and planning

software solutions
• Building software solutions
• Checking software solutions
• Modifying software solutions

Developing Software Solutions 20%

HSC Course

Core strands (80% total time)

Development and Impact of Software
Solutions 15%
• Social and ethical issues
• Application of software development

approaches

Software Development Cycle 40%
• Defining and understanding the

problem
• Planning and design of software

solutions
• Implementation of software solutions
• Testing and evaluation of software

solutions
• Maintenance of software solutions

Developing a Solution Package 25%

Options 20%

One of the following options:
1.Evolution of programming languages

OR
2.The Software Developer’s view of the

hardware

6 Course Structure

The following table provides an overview of the arrangement and relationship between
components of the Preliminary course and the HSC course for Software Design and
Development Stage 6. The percentage values refer to indicative course time.

Options

One of the following options:

1. Evolution of Programming
Languages

OR

2. The Software Developers View
of the Hardware

Developing a Solution Package

Software Development Cycle

Development and Impact of Software
Solutions

Software Development Cycle

Defining the Understanding Planning Implementation Testing and Maintenance
Problem and Evaluation

Design

Developing Software Solutions

Introduction to Software Development

Concepts and Issues in the Design
and Development of Software

An Introduction to Software Development

Defining the Planning Building Checking Modifying
Problem

Software Design and Development Stage 6 Syllabus

10

Social and
Ethical Issues

Project(s)

Social and
Ethical Issues

Project(s)

P
re

lim
in

ar
y

H
S

C

11

Software Design and Development Stage 6 Syllabus

7 Objectives and Outcomes

7.1 Table of Objectives and Outcomes

Objectives

Students will develop:

1.knowledge and
understanding about how
software solutions utilise
and interact with other
elements of computer
systems

2.knowledge and
understanding of the
historical developments that
have led to current practices
in software design and
development, and of
emerging trends and
technologies in this field

3.knowledge and
understanding of legal,
social and ethical issues
and their effect on software
design and development

4.skills in designing and
developing software
solutions

Preliminary outcomes

A student:

P1.1 describes the functions
of hardware and
software

P1.2 describes and uses
appropriate data types

P1.3 describes the
interactions between
the elements of a
computer system

P2.1 describes developments
in the levels of
programming languages

P2.2 explains the effects of
historical developments
on current practices

P3.1 identifies the issues
relating to the use of
software solutions

P4.1 analyses a given
problem in order to
generate a computer-
based solution

P4.2 investigates a
structured approach in
the design and
implementation of a
software solution

P4.3 uses a variety of
development
approaches to generate
software solutions and
distinguishes between
these approaches

HSC outcomes

A student:
H1.1 explains the

interrelationship
between hardware and
software

H1.2 differentiates between
various methods used
to construct software
solutions

H1.3 describes how the
major components of a
computer system store
and manipulate data

H2.1 describes the historical
development of different
language types

H2.2 explains the relationship
between emerging
technologies and
software development

H3.1 identifies and evaluates
legal, social and ethical
issues in a number of
contexts

H3.2 constructs software
solutions that address
legal, social and ethical
issues

H4.1 identifies needs to which
software solutions are
appropriate

H4.2 applies appropriate
development methods
to solve software
problems

H4.3 applies a modular
approach to implement
well structured software
solutions and evaluates
their effectiveness

Software Design and Development Stage 6 Syllabus

12

5. skills in management
appropriate to the design
and development of
software solutions

6. skills in teamwork and
communication
associated with the
design and development
of software solutions

P5.1 uses and justifies the
need for appropriate
project management
techniques

P5.2 uses and develops
documentation to
communicate software
solutions to others

P6.1 describes the role of
personnel involved in
software development

P6.2 communicates with
appropriate personnel
throughout the
software development
process

P6.3 designs and
constructs software
solutions with
appropriate interfaces

H5.1 applies project
management
techniques to
maximise the
productivity of the
software development

H5.2 creates and justifies
the need for the
various types of
documentation
required for a
software solution

H5.3 selects and applies
appropriate software
to facilitate the design
and development of
software solutions

H6.1 assesses the
relationship between
the roles of people
involved in the
software development
cycle

H6.2 communicates the
processes involved in
a software solution to
an inexperienced user

H6.3 uses a collaborative
approach during the
software development
cycle

H6.4 develops effective
user interfaces, in
consultation with
appropriate people

7.2 Key Competencies

Software Design and Development provides a context within which to develop
general competencies considered essential for the acquisition of effective, higher-
order thinking skills necessary for further education, work and everyday life.

The key competencies are explicitly addressed in the Software Design and
Development syllabus to enhance student learning. The key competency of
collecting, analysing and organising information is addressed through the
planning stage, when students are required to determine what the problem is and
how it may best be solved.

Communicating ideas and information is a skill developed by students so that
they can both understand the nature of the problem to be solved and ensure that
the proposed solution meets the users’ needs.

Planning and organising activities and working with others and in teams are
integral to the development of software and are addressed in Preliminary and HSC
courses, mainly through the development of software solutions using effective
project management techniques.

Using mathematical ideas and techniques is addressed as students formulate
algorithms, investigate data structures with consideration to how they are presented
internally, and construct timelines or analyse statistical evidence.

During investigations, students will need to select and use appropriate information
technologies, thereby developing the key competency of using technology.

Finally, the exploration of issues and investigation and solution of problems
contributes towards the students’ development of the key competency solving
problems.

13

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

14

Students learn about:

Ergonomics
• effects of prolonged use of software,

including RSI and injuries created by
overuse

• procedures to prevent and minimise
injuries

• ergonomically designed and placed
equipment

• ergonomic issues regarding software
design:
– acceptable response time in

software
– ‘user friendly’ software, including:

- ease of use
- appropriate messages to the

user
- consistency of the user

interface

Intellectual property
• software licence agreements,

including:
– licence terminology

Students learn to:

• identify sound ergonomic practices
when using computers

• assess the ergonomic needs of the
user when developing software

• debate the issues relating to
intellectual property

8 Content: Software Design and Development Stage 6
Preliminary Course

8.1 Concepts and Issues in the Design and Development of
Software

8.1.1 Social and ethical issues

This topic identifies social and ethical issues that arise in the development and use
of software. Students should be made aware of these issues early in the course so
that they can act in a socially responsible and ethical way throughout the course.
Although these issues are taught specifically as part of this topic, they should also
be reconsidered as each new topic is discussed. Thus, for example, interface
design issues, duplication of code or ideas, language used in documentation should
all be considered again at relevant parts in the course.

Outcomes

A student:
P2.2 explains the effects of historical developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P6.1 describes the role of personnel involved in software development.

15

Software Design and Development Stage 6 Syllabus

Students learn about:

– legal aspects
– use of software covered by a

licence agreement
• origin of software design ideas

– evolution of existing concepts,
including:

- GUI interface
- search engines

– new and exciting approaches,
including:

- visicalc
- web browsers
- presentation software

• events that have led to the need for
software licence agreements,
including:
– ease of reproduction and copy
– collaborative development history
– the current open environment of

the Internet
• sources of code and conditions that

apply, including:
– the Internet
– books and magazines
– shareware

Inclusivity
• the need for software design and

development to be inclusive
– cultural perspectives
– economic perspectives
– social perspectives
– gender perspectives
– disability perspectives

• the general strengths brought to the
field of software design and
development, including:
– communication skills
– ability to work in teams
– creativity
– design skills
– problem-solving skills
– attention to detail

Students learn to:

• use software in an ethically and
legally correct manner

• evaluate existing software interfaces
in terms of its inclusivity

Software Design and Development Stage 6 Syllabus

16

Students learn about:

Hardware
• the function of hardware within a

computer system, namely:
– input
– output
– process
– storage
– control

• the operation of a variety of input
devices, output devices, storage
devices and CPU components

• the current trends and developments
in computer hardware

Software
• system software, including utility

software
• applications packages and custom-

designed software
• generations of programming

languages, namely:
– machine
– assembler
– higher level languages
– declarative languages

Students learn to:

• describe how data is captured, stored
and manipulated on a variety of
hardware devices

• competently use computer hardware,
selecting appropriate hardware for
specific tasks

• competently use a range of software
• describe the development of

subsequent generations of
programming languages

8.1.2 Hardware and software

This topic is intended to introduce two of the components of a computer system,
hardware and software. Hardware and software are two different but dependent
components of a computer system — they cannot be used in isolation. This topic
looks at the different parts of a computer system and their relationship to software
design.

Outcomes

A student:
P1.1 describes the functions of hardware and software
P1.3 describes the interactions between the elements of a computer system
P2.1 describes developments in the levels of programming languages
P2.2 explains the effects of historical developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P6.1 describes the role of personnel involved in software development.

17

Software Design and Development Stage 6 Syllabus

Students learn about:

• event driven versus sequential
approach

• the need for translation
– compilation
– interpretation
– incremental compilation

• characteristics of different operating
systems, including:
– command-based or graphical user

interface
– multi-tasking

• current trends in the development of
software and operating systems

The relationship between hardware
and software
• processing of software instructions by

hardware
– the ‘fetch-execute’ cycle

• the initiation and running of an
application
– start fetch-execute cycle
– locate on disk
– load into RAM
– display the start screen
– wait for user input

• the existence of minimum hardware
requirements to run some software

• elements of a computer system,
including:
– hardware
– software
– data
– procedures
– personnel

and their role in software design and
development

Students learn to:

• appraise the effect of the operating
system on the tasks that the system
can perform

• interpret and use an ASCII table

• identify the elements of a computer
system

• describe the significance of each
element in the software solution using
a case study approach

Software Design and Development Stage 6 Syllabus

18

Students learn about:

The structured approach to software
solutions
• program development cycle for the

structured approach, including
defining the problem, planning,
building, checking and modifying

• characteristics of the structured
approach, including:
– long time periods
– large-scale projects
– large budgets

• involvement of personnel, including
analysts, designers, programmers,
users and management

• team approach

The prototyping approach to
software solutions
• characteristics of the prototyping

approach, including:
– non-formal
– shorter time period
– small-scale projects
– small budgets

Students learn to:

• identify each of these stages in
practical programming exercises

8.1.3 Software development approaches

There are a number of different approaches that can be taken when developing
software. Four are prescribed for study in this course. The approach used for a
given software solution will reflect the level of ability of those developing the
software, its purpose and its users. There are many ways in which software is
commercially developed, from an ad-hoc approach to the very formalised structured
approach. This topic introduces students to some of the alternative approaches and
the relevance of each.

Outcomes

A student:
P2.2 explains the effects of historical developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a

software solution
P4.3 uses a variety of development approaches to generate software solutions and

distinguishes between these approaches
P6.1 describes the role of personnel involved in software development.

19

Software Design and Development Stage 6 Syllabus

Students learn about:

• involvement of personnel, including
programmer and users

• links with structured approach

The rapid applications software
development approach
• characteristics of the rapid approach,

including:
– lack of formal stages
– coding languages used
– relationship of programmer to end

user
– short time period
– small-scale projects
– low budgets

• involvement of personnel, including
developer and end user

End user approach to software
development
• characteristics of the end user

approach, including:
– use of standard software packages
– lack of formal stages
– short time period
– potential long-term, small-scale

project
– low budgets
– end user is the developer

Students learn to:

• design and develop a limited
prototype as a demonstration of a
solution to a specified problem

• use an existing software package to
develop a customised solution

• select appropriate software
development approaches for specific
purposes

Software Design and Development Stage 6 Syllabus

20

Students learn about:

Defining the problem
• understanding the problem
• identification of inputs and required

outputs
• determining the steps that, when

carried out, will solve the problem

Students learn to:

• determine the inputs and outputs
required for a particular problem

8.2 Introduction to Software Development

All software development approaches include the phases of defining the problem,
planning, building, checking and modifying. There are variations in the time,
sequence and organisation of these phases in each of the four approaches
introduced in this course. Students may use more than one approach in this course.
The content for each of the phases is listed below and should be presented to
students in a cyclic fashion. Areas for investigation could include modelling and
simulation, hypermedia tools, publishing on the World Wide Web and customisation
of application packages through scripting or writing modules.

8.2.1 Defining the problem and planning software solutions

In planning a solution, students need to understand the problem to be solved and
how the solution will be used. In this topic, students will consider all aspects of the
solution before starting its implementation. The selection of data types and
structures used in the solution of a problem can have a huge impact on the
effectiveness of that solution. A variety of data types and structures are introduced
in this topic and appropriate algorithms should be developed and implemented that
make best use of these. As algorithms become more complex, there is a need for a
methodical top-down approach with progressive refinement of detail. It is important
that algorithms use the control structures as specified in Methods of Algorithm
Description (see page 56). Problems should be selected at a level of difficulty
commensurate with the ability level of students.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P2.2 explains the effects of historical developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a

software solution
P4.3 uses a variety of development approaches to generate software solutions and

distinguishes between these approaches
P5.2 uses and develops documentation to communicate software solutions to others.

21

Software Design and Development Stage 6 Syllabus

Students learn about:

Abstraction/Refinement
• the top-down approach to solution

development
• refinement of a proposed solution
• modification of an existing solution

Data types
• data types used in solutions,

including:
– integer
– string
– floating point
– boolean
– date and currency format

• data structures, including:
– one-dimensional array
– record
– sequential files

• limits of particular data types
• integer representation in binary,

decimal, octal and hexadecimal
• the impact of hardware/software limits

on different data types

Structured algorithms
• methods for representing algorithms:

– pseudocode
– flowcharts

• control structures:
– sequence
– selection (binary, multiway)
– iteration (pre-test, post-test),

including: for … next loops
• software structure

– subroutines
– modularity

• use of standard algorithms, including:
– load and print an array
– process records from a sequential

file
• checking the algorithm for errors
• historical events that led to the

development of a structured approach
to algorithm design

Students learn to:

• develop a systematic approach to the
development of a solution

• select the most appropriate data type
for the solution to a particular problem
and discuss the merit of the chosen
type

• interpret and create algorithms
represented in both pseudocode and
flowcharts

• identify control structures in an
algorithm

• detect logic errors in an algorithm by
performing a desk check

• gather solutions from a number of
sources and modify them to form an
appropriate solution to a specified
problem

8.2.2 Building software solutions

The building phase could involve a range of activities from modifying existing code
to the development of new code. In order to build a solution, students need to
understand the syntax of the chosen language. Careful consideration needs to be
given to the language used to implement solutions. The chosen language should be
one that best reinforces the design concepts being taught, not one that is currently
fashionable. In some cases, this may be a scripting language for an applications
package. Language choice will also be affected by the type of translation to be
used, and whether or not a sequential or an event-driven approach is to be used. It
is recognised that in a school environment, the choice of language may well be
limited by the skills and resources available. It is important, however, that any
language used meet the course requirements as specified in Software
Specifications (see page 56). For every algorithm that is implemented, the specified
user interface will need to be developed along with documentation that explains
what has taken place during the building phase. Relevant social and ethical issues
should be revisited, particularly with reference to appropriate interface design,
language used in the interfaces and issues related to using others’ designs and
software

Outcomes

A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a

software solution
P4.3 uses a variety of development approaches to generate software solutions and

distinguishes between these approaches
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the role of personnel involved in software development
P6.2 communicates with appropriate personnel throughout the software

development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Software Design and Development Stage 6 Syllabus

22

23

Software Design and Development Stage 6 Syllabus

Students learn about:

Coding in an approved programming
language
• meta-languages, including:

– BNF
– EBNF
– Railroad diagrams

• reading and writing statements in
meta-languages

• the syntax of the statements used to
represent the control structures,
including:
– sequence
– selection (binary, multiway)
– iteration (pre-test, post-test)
– combinations of these

• the syntax of the statements used to
define and use a range of data types,
including:
– integer
– string
– floating point
– one-dimensional array
– record
– sequential files

Error correction techniques
• types of coding errors, including:

– syntax errors
– runtime errors
– logic errors

• stubs
– used to check the connection

between modules of code
• flags

– used to check if a section of code
has been processed

– can be used as part of the logic of
a solution or as a systematic error
correction process

• debugging output statements:
– additional print statements in the

code that help in telling what part of
the code has been executed or for
interrogating variable contents at a
particular point in the program’s
execution

Students learn to:

• use meta-language statements from
manuals and help files to develop
syntactically correct code

• verify the syntax of a command using
meta-language statements

• generate appropriate source code by:
– using a programming environment

to generate and execute code
– coding an algorithm into the chosen

programming language
– using different data types in

solutions

• trace the output of a given code
fragment and modify it appropriately

• run, correct and extend existing code
• systematically eliminate syntax errors

so that a program can be executed
• test a program with boundary values

to detect runtime errors
• detect and correct logic errors in

program code by using a systematic
error correction process

• use automated debugging features in
programming environments

Software Design and Development Stage 6 Syllabus

24

Students learn about:

Libraries of code
• reusable code

– standard routines, such as data
validation, date conversion and
words to numbers

• combining code and modules from
different sources
– copying and pasting into code
– ways of calling modules of code
– sharing/passing variables between

modules

User interface development
• consult with users
• the different perspectives a user and

a developer have to a program
• effective user interfaces

– factors affecting readability
– use of white space
– effective prompts
– judicious use of colour and

graphics
– grouping of information
– unambiguous and non-threatening

error messages
– legibility of text: justification, font

type (serif vs sans serif), size, style
– recognition of relevant social and

ethical issues
– consistency

Documentation
• types of documentation

– documentation for developers
– documentation for users

• internal documentation
– meaningful variable names

(intrinsic)
– readability of code (comments,

white space and indentation)
• online help

Students learn to:

• develop standard routines for reuse

• create solutions to problems using
existing code with minimal change or
additions

• represent code from different sources
as an algorithm, to assist in
understanding its purpose

• solve problems that require the
creation of a user interface

• evaluate the effectiveness of screens
used in commercially available
software

• design screens incorporating good
design and ergonomic features

• document code for different
audiences

• fully document a solution that has
been developed in the classroom

• use application packages to
document a solution

• interpret code and documentation
prepared by others

25

Software Design and Development Stage 6 Syllabus

Students learn about:

Test data
• selecting data for which the expected

output is known
• the need for thorough test data
• the selection of appropriate test data,

including:
– data that test all the pathways

through the algorithm
– data that test boundary

conditions — upper and lower
values and values upon which
decisions are based

– data where the required answer is
known

• testing both algorithms and coded
solutions with test data, such as:
– desk checking an algorithm
– stepping through a coded solution

line by line

Students learn to:

• determine the expected result given
the test data

• create a set of appropriate test data
and use them to verify the logic in a
solution

• use test data on algorithms and
coded solutions

8.2.3 Checking software solutions

Students should check their code using test data that test all possibilities. Live
testing of programs should take place so that environment problems can be
identified and removed. Students should also be checking that original requirements
are being met. Specifications for a problem and a solution to the problem could be
given to students and they could be asked to test the solution to see if it meets the
specifications. It is important for students to recognise the responsibilities of
software developers, in terms of providing a software solution that is appropriate to
the defined problem and that works fully under all possible conditions. Developed
software must be thoroughly tested to ensure that it will not fail unexpectedly or
produce irrelevant results, even when exposed to unusual or unexpected conditions.

Outcomes

A student:
P3.1 identifies the issues relating to the use of software solutions
P4.2 investigates a structured approach in the design and implementation of a

software solution
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the role of personnel involved in software development
P6.2 communicates with appropriate personnel throughout the software

development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Software Design and Development Stage 6 Syllabus

26

Students learn about:

Evaluation of design
• comparing different solutions to the

same problem
– different interpretations of the

design specifications
– the advantages and disadvantages

of different approaches to reaching
the solution

• peer checking
• structured walk through
• desk checking

Evaluation of implemented solution
• checking the solution to see if it

meets the original design
specifications

• user feedback
• social and ethical perspective

Students learn to:

• communicate solutions to others

• critically evaluate their work and that
of their peers and share good aspects
of their solutions using elegant
aspects of other students’ solutions

27

Software Design and Development Stage 6 Syllabus

Students learn about:

Reasons for maintenance coding
• changing user requirements
• upgrading the user interface
• changes in the data to be processed
• introduction of new hardware or

software
• changing organisational focus
• changes in government requirements
• poorly implemented code

Social and ethical implications
• plagiarism

Features in source code that improve
its maintainability, including:
• use of variables instead of literal

constants

Students learn to:

• identify features in code, scripts or
macros that allow it to be easily
maintained and explain how this can
be achieved

• create solutions to ensure ease of
maintenance

8.2.4 Modifying software solutions

Modifications to code are often required. These modifications need not be made by
the original developers. In these situations, original documentation is very important.
Students should be given opportunities to modify their code and to gain experience
in modifying the code of others with varying amounts of documentation available.
Students could be asked to modify their solutions as a means of assessing their
understanding of their original solution. Students should be reminded of the ethical
issues associated with accessing and modifying the code of others.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P2.2 explains the effects of historical developments on current practices
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a

software solution
P4.3 uses a variety of development approaches to generate software solutions and

distinguishes between these approaches
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the role of personnel involved in software development
P6.2 communicates with appropriate personnel throughout the software

development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Software Design and Development Stage 6 Syllabus

28

Students learn about:

• use of meaningful variable names
• explanation comments in the code
• use of standard control structures
• a clear and uncluttered mainline
• one logical task per subroutine

Interpretation
• reading original documentation in

order to understand the code
– documents for the user (including

user manuals)
– documents for software developers

• reading original algorithms to identify:
– inputs to the algorithm
– the types of variables used
– processes used
– outputs

• creating algorithms for source code
when they are not available

Documentation
• using supplied documentation to:

– identify the control structures that
have been used

– explain how variables have been
used

Students learn to:

• modify original statements obtained
from a variety of sources

• convert a fragment of source code,
macro or script into its equivalent
algorithm

• define the purpose of the code,
macro or script to be maintained

29

Software Design and Development Stage 6 Syllabus

Students learn about:

Implementing projects
the steps in implementing project(s)
include:
• defining the problem

– understanding the problem
– identification of inputs, processes

and outputs to be applied to the
problem

• planning
– identification of a suitable

development approach
– design of appropriate algorithms
– determination of appropriate data

structures
– identification of relevant subroutines
– the design of test data and

expected output
– the desk check of algorithms
– identification of existing code that

can be used

Students learn to:

8.3 Developing Software Solutions

The project(s) will build students’ understanding of the content in the other topics in
the course and allow for practical implementation of theory.

Working in teams is common in the computing field beyond school. In order to be a
successful member of a team, students need to be able to communicate well with
others and to act in a social and ethical way. Project(s) are areas in which students
may be given these opportunities.

Outcomes

A student:
P1.2 describes and uses appropriate data types
P1.3 describes the interactions between the elements of a computer system
P3.1 identifies the issues relating to the use of software solutions
P4.1 analyses a given problem in order to generate a computer-based solution
P4.2 investigates a structured approach in the design and implementation of a

software solution
P4.3 uses a variety of development approaches to generate software solutions and

distinguishes between these approaches
P5.1 uses and justifies the need for appropriate project management techniques
P5.2 uses and develops documentation to communicate software solutions to others
P6.1 describes the role of personnel involved in software development
P6.2 communicates with appropriate personnel throughout the software

development process
P6.3 designs and constructs software solutions with appropriate interfaces.

Software Design and Development Stage 6 Syllabus

30

Students learn about:

• building
– implementation of the solution in an

appropriate language
– testing of the solution using test data
– documenting the solution, including

algorithms, tutorial, test data and
expected output, data dictionary

• checking
– testing of the solution using test

data
– evaluation of the completed

solutions
• modifying

– changing the solution to meet the
specifications

Project management techniques
• identification of tasks
• identification of techniques to assist

project management, including:
– Gantt charts
– logbooks
– identification of sub-goals

• allocation of resources
• identification of major milestones and

stumbling blocks
• regular backup
• response to difficulties
• regular reporting
• evaluation

Project documentation
• relevant documentation may include

the use of:
– algorithms
– Gantt charts
– manuals
– systems documentation
– data dictionaries
– diaries
– CASE-tools

Social and ethical issues related to
project work
• relevant issues may include:

– ease of use
– gender bias
– accessibility of technical language
– copyright

– ergonomics

Students learn to:

• design and implement a software
solution to a selected problem using
project implementation steps

• use Gantt charts and logbooks

• devise a management plan and use it
when undertaking a software
development project

• use appropriate application packages
in creating documentation to support
the development of a project

• prepare suitable documentation to
accompany software solutions

• ensure relevant social and ethical
issues have been addressed

• evaluate the project in relation to the
original understanding of the problem

• evaluate the quality of the solution

9 Content: Software Design and Development Stage 6
HSC Course

9.1 Development and Impact of Software Solutions

9.1.1 Social and ethical issues

Students undertaking the HSC course should be aware of the broader social and
ethical issues associated with computer use. In addition to acting in socially
responsible and ethical ways, students should implement these values into their
broader use of computers. Students should be able to identify relevant social and
ethical issues and participate in current debates. This topic builds on the concepts
covered in the Preliminary course and looks specifically at the rights and
responsibilities of developers from a number of perspectives. It is intended that all of
these issues be continually revisited within each topic in the HSC course.

Outcomes

A student:
H2.2 explains the relationship between emerging technologies and software

development
H3.1 identifies and evaluates legal, social and ethical issues in a number of

contexts.

31

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

32

Students learn about:

Rights and responsibilities of
software developers
• authorship
• reliability
• quality
• response to problems
• code of conduct
• viruses

Software piracy and copyright
• concepts associated with piracy and

copyright, including:
– intellectual property
– plagiarism
– shareware
– public domain
– ownership versus licensing
– copyright laws
– reverse/backwards engineering
– decompilation
– licence conditions
– network use

• various national perspectives to
software piracy and copyright laws

• the relationship between copyright
laws and software license
agreements

The software market
• maintaining market position
• the effect on the marketplace

Significant social and ethical issues
• national and international legal action

resulting from software development
• public issues, including:

– the year 2000 problem
– computer viruses
– reliance on software

Students learn to:

• identify the impact on consumers of
inappropriately developed software

• interpret copyright agreements and
develop personal practices that reflect
current laws

• acknowledge all sources in
recognition of the intellectual
contribution of authors

• debate current issues relevant to
software development

9.1.2 Application of software development approaches

Students should be aware of the advantages and disadvantages of each of the
different software development approaches introduced in the Preliminary course.
Students will complete a case study of software being developed by a team of
people. Particular emphasis should be placed on the people involved, how they
interact and the skills they possess. Current trends in software development will
also be considered.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H2.2 explains the relationship between emerging technologies and software

development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H4.2 applies appropriate development methods to solve software problems
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.1 assesses the relationship between the roles of people involved in the software

development cycle
H6.2 communicates the processes involved in a software solution to an

inexperienced user.

33

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

34

Students learn about:

Software development approaches
• approaches used in commercial

systems, including:
– the structured approach
– prototyping
– rapid applications development
– end user development
– combinations of any of the above

• methods of implementation
– direct cut over
– parallel
– phased
– pilot

• current trends in software
development, for example:
– outsourcing
– popular approaches
– popular languages
– employment trends
– networked software
– customised off-the-shelf packages

• use of CASE tools and their
application in large systems
development
– software versions
– data dictionary
– test data
– production of documentation

Students learn to:

• compare and determine the most
appropriate software development
approach for a given scenario

• communicate their understanding of a
commercial system studied using a
case study approach by:
– describing how the skills of the

various personnel contribute to the
overall development of a computer-
based system

– critically evaluating the
effectiveness of the response to the
social and ethical issues raised by
this system

• make informed comment on current
trends in software development

9.2 Software Development Cycle

While many of the students who will study this course may have had some previous
experience in the development of software, few will have done so using the formal
methods that make up the software development cycle. This approach to software
development will empower students to undertake much more complex development
projects, knowing that the developed system will be in a standard maintainable
format. Students should draw on the skills of others to assist them in this process.
The topics that come together to form this cycle are the fundamentals of the HSC
course. These topics should not be studied in isolation or in a sequential fashion.
Students should be exposed to the content in a cyclic fashion. The project requires
that students follow and implement the cycle from beginning to end. Areas for
investigation here could include modelling and simulation, the production of games,
hypermedia tools, publishing on the World Wide Web and customisation of
application packages through scripting or writing modules.

9.2.1 Defining and understanding the problem

In order for students to be able to develop software to meet an identified need, they
first need to be able to understand the specifications of a problem so that they can
eventually translate these specifications into code. As well as having good technical
skills, it is also necessary for students to have good communication skills so that the
users’ requirements can be fully understood and implemented throughout the
development process. The modelling tools used should conform to those specified
in Software Specifications (see page 56) and should produce documentation able to
be interpreted by developers, maintainers and users as required. It is important at
this initial stage of the process that all relevant social and ethical issues are
considered as an integral part of the design and development of the solution.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions

35

Software Design and Development Stage 6 Syllabus

H6.1 assesses the relationship between the roles of people involved in the software
development cycle

H6.2 communicates the processes involved in a software solution to an
inexperienced user

H6.3 uses a collaborative approach during the software development cycle
H6.4 develops effective user interfaces, in consultation with appropriate people.

Software Design and Development Stage 6 Syllabus

36

37

Software Design and Development Stage 6 Syllabus

Students learn about:

Defining the problem
• identifying the problem

– needs
– objectives
– boundaries

• determining the feasibility of the
solution
– is it worth solving?
– constraints
– budgetary
– operational
– technical
– scheduling
– possible alternatives
– social and ethical considerations

Design specifications
• the developer’s perspective in

consideration of:
– data types
– algorithms
– variables

• the user’s perspective

Modelling
• representing a system using

diagrams, including:
– Input Process Output (IPO)

diagrams
– story boards
– data flow diagrams
– systems flowcharts
– screen designs
– consideration of use of a limited

prototype

Communication issues, including:
• the need to empower the user
• the need to acknowledge the user’s

perspective
• enabling and accepting feedback

Students learn to:

• develop and interpret design
specifications from a user’s
perspective, considering:
– screen design
– appropriate messages
– appropriate icons
– relevant data formats for display
– ergonomic issues
– relevance to the user’s

environment and computer
configuration

– social and ethical issues

• evaluate the extent to which a
proposed system will meet user
needs

• differentiate between the different
forms of systems documentation and
the purposes for which each is
intended

• interpret a system presented in a
diagrammatic form

• create a diagrammatic representation
for a system using an appropriate
method

• effectively communicate with users
regarding a proposed software
solution

9.2.2 Planning and design of software solutions

To solve complex problems, students need to develop a strategy. They need to be
able to identify inputs and outputs, to select and describe relevant data structures,
to explain the procedures required for the solution and explain how each of these
will interact. Well-structured algorithms should be developed. Desk checking of
algorithms and documentation of the proposed solution are also important.

The development of structured algorithms to document the logical solution of
problems is a fundamental principle of this course. These must be developed
independently of any coding language that will be used in eventually implementing
the algorithm. A well-developed algorithm can be implemented in any number of
languages, while transferring code from one language to another is a more difficult
process. Students should appreciate that the real skill is in the development of the
algorithm, not the implementation of the logic in a particular language. Not every
algorithm developed in this section of the course need be implemented.

Problems must be chosen with an appropriate level of difficulty that reflects the
ability level of students. The level of difficulty should be greater than in the
Preliminary course. Relevant problems could include the development of games
such as hangman, quizzes, mastermind, draughts and search-a-word.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.3 describes how the major components of a computer system store and

manipulate data
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.2 communicates the processes involved in a software solution to an

inexperienced user
H6.3 uses a collaborative approach during the software development cycle.

Software Design and Development Stage 6 Syllabus

38

39

Software Design and Development Stage 6 Syllabus

Students learn about:

Standard algorithms for searching
and sorting
• standard logic used in software

solutions, namely:
– finding maximum and minimum

values in arrays
– processing strings (extracting,

inserting, deleting)
– file processing, including sentinel

value
– linear search
– binary search
– bubble sort
– insertion sort
– selection sort

Custom-designed logic used in
software solutions
• requirements to generate these

include:
– identification of inputs, processes

and outputs
– representation as an algorithm
– definition of required data

structures
– use of data structures, including

multi-dimensional arrays, arrays of
records, files (sequential and
relative/random)

– use of random numbers
– thorough testing

Standard modules (library routines)
used in software solutions
• requirements for generating or

subsequent use include:
– identification of appropriate

modules
– consideration of local and global

variables
– appropriate use of parameters

(arguments)
– appropriate testing using drivers
– thorough documentation

Students learn to:

• recognise the logic in a standard
approach (such as a sort or search)

• apply standard approaches as part of
the solution to complex problems

• document the logic required to solve
problems, including:
– file handling and management
– random number generators
– multi-dimensional arrays
– nesting of control structures

• develop a suitable set of test data
and desk check algorithms that
include complex logic

• select an appropriate data structure
to solve a given problem

• develop a standard module and
document its use

• correctly incorporate a standard
module into a more complex solution,
passing parameters effectively

Software Design and Development Stage 6 Syllabus

40

Students learn about:

Customisation of existing software
solutions
• identification of relevant products
• customisation
• cost effectiveness

Documentation of the overall
software solution
• tools for representing a complex

software solution include:
– algorithm descriptions
– system flowcharts
– structure diagrams
– data flow diagrams
– data dictionary

Selection of language to be used
• event-driven software

– driven by the user
– program logic

• sequential approach
– defined by the programmer

• relevant language features
• hardware ramifications
• Graphical User Interface (GUI)

Students learn to:

• evaluate the effectiveness of using
commercially developed software

• represent a software solution in
diagrammatic form

• identify the parts of the system that
require software to be custom
designed and developed

• select and use appropriate CASE
software to assist in the development
of a software solution

9.2.3 Implementation of software solution

In the implementation phase of the software development cycle, previously
developed algorithms are converted to a form that can be processed by a computer.
Students will need to learn the syntax of the language, macro or script being used,
to successfully implement their solutions. The translation method being used should
be recognised, particularly in the case of code. Students will need to recognise the
approach being used (that is, sequential or event-driven) and will need to make
appropriate decisions about the design of interfaces and the documentation
produced. Relevant social and ethical issues should be considered during this
implementation process.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.2 differentiates between various methods used to construct software solutions
H1.3 describes how the major components of a computer system store and

manipulate data
H2.2 explains the relationship between emerging technologies and software

development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.2 communicates the processes involved in a software solution to an

inexperienced user
H6.3 uses a collaborative approach during the software development cycle.

41

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

42

Students learn about:

Interface design in software
solutions
• the design of individual screens,

including:
– identification of data required
– current popular approaches
– design of help screens
– audience identification
– consistency in approach

Language syntax required for
software solutions
• use of BNF, EBNF and railroad

diagrams to describe the syntax of
new statements in the chosen
language

• commands incorporating the definition
and use of:
– multi-dimensional arrays
– arrays of records
– files (sequential and

relative/random)
– random number generators

The role of the CPU in the operation
of software
• machine code and CPU operation

– instruction format
– use of registers and accumulators
– use of program counter and fetch-

execute cycle
– addresses of called routines
– linking, including use of DLL’s

Translation methods in software
solutions
• different methods include:

– compilation
– incremental compilation
– interpretation

• the translation process
• advantages and disadvantages of

each method

Students learn to:

• select either a sequential or event-
driven approach and an appropriate
language to effectively solve the
problem

• design and evaluate effective screens
for software solutions

• utilise the correct syntax for new
commands using the metalanguage
specification

• produce syntactically correct
statements

• implement a solution utilising a
complex algorithm

• recognise and interpret machine code
instructions

• choose the most appropriate
translation method for a given
situation

• utilise the features of both a compiler
and an interpreter in the
implementation of a software solution

43

Software Design and Development Stage 6 Syllabus

Students learn about:

Program development techniques in
software solutions
• structured approach to a complex

solution, including:
– one logical task per subroutine
– stubs
– flags
– isolation of errors
– debugging output statements
– elegance of solution
– writing for subsequent maintenance

• the process of detecting and
correcting errors, including:
– syntax errors
– logic errors
– peer checking
– desk checking
– use of expected output
– run time errors, including:

- arithmetic overflow
- division by zero
- accessing inappropriate memory

locations
• the use of software debugging tools,

including:
– use of breakpoints
– resetting variable contents
– program traces
– single line stepping

Documentation of a software
solution
• forms of documentation, including:

– process diary
– user documentation
– self-documentation of the code
– technical documentation, including

source code, algorithms, data
dictionary and systems
documentation

– documentation for subsequent
maintenance of the code

• use of application software to assist
in the documentation process
– use of CASE tools

Students learn to:

• justify the use of a clear modular
structure with separate routines to
ease the design and debugging
process

• use drivers to test specific modules,
before the rest of the code is
developed

• differentiate between the different
types of errors encountered during
the testing phase

• recognise the cause of a specific
error and determine how to correct it

• effectively use a variety of appropriate
error correction techniques to locate
the cause of a logic error and then
correct it

• produce user documentation (utilising
screen dumps) that includes:
– a user manual (topics presented in

order of difficulty)
– a reference manual (all commands

in alphabetic order)
– an installation guide
– a tutorial to introduce new users to

the software
• identify the personnel who would be

likely to use the different types of
documentation

Software Design and Development Stage 6 Syllabus

44

Students learn about:

Hardware environment to enable
implementation of the software
solution
• hardware requirements

– minimum configuration
– possible additional hardware
– appropriate drivers or extensions

Emerging technologies
• hardware
• software
• their effect on:

– human environment
– development process

Students learn to:

• recognise the need for additional
hardware

• assess the effect of an emerging
technology on society

9.2.4 Testing and evaluation of software solutions

Students should verify their solutions using test data both at program and system
level. Live testing of programs should take place so that environment problems can
be identified and removed. Students should also be checking that original
requirements are being met. All user interfaces should also be evaluated at this
stage. These steps are critical in ensuring that the developed product meets the
user’s needs in terms of relevance, reliability and quality.

Outcomes

A student:
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.1 assesses the relationship between the roles of people involved in the software

development cycle
H6.2 communicates the processes involved in a software solution to an

inexperienced user
H6.3 uses a collaborative approach during the software development cycle
H6.4 develops effective user interfaces, in consultation with appropriate people.

45

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

46

Students learn about:

Testing the software solution
• comparison of the solution with the

original design specifications
• generating relevant test data for

complex solutions
• levels of testing

– unit or module
– program
– system

• the use of live test data to test the
complete solution:
– larger file sizes
– mix of transaction types
– response times
– volume data
– interfaces between modules
– comparison with program test data

• benchmarking
• quality assurance

Reporting on the testing process
• documentation of the test data and

output produced
– use of CASE tools

• communication with those for whom
the solution has been developed,
including:
– test results
– comparison with the original design

specifications

Students learn to:

• differentiate between systems and
program test data

• test their solution with the test data
created at the design stage,
comparing actual output with that
expected

• demonstrate the features of a new
system to users, facilitating open
discussion and evaluation

9.2.5 Maintenance of software solutions

Modifications to code, macros and scripts are often required. Often these are not
made by the original developers. Under these circumstances, original
documentation is of importance, as is the structure and self-documentation of the
commands to be updated. Students should be given opportunities to modify their
own code, macros and scripts and experience modifying the code, macros and
scripts of others, supported by varying degrees of documentation.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.1 assesses the relationship between the roles of people involved in the software

development cycle
H6.2 communicates the processes involved in a software solution to an

inexperienced user
H6.3 uses a collaborative approach during the software development cycle
H6.4 develops effective user interfaces, in consultation with appropriate people.

47

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

48

Students learn about:

Modification of code to meet
changed requirements
• identification of the reasons for

change in code, macros and scripts
• location of section to be altered
• determining changes to be made
• implementing and testing solution

Documentation of changes
• source code, macro and script

documentation
• modification of associated hard copy

documentation and online help
• use of CASE tools to monitor

changes and versions

Students learn to:

• read and interpret others’ code,
macros and scripts

• design, implement and test
modifications

• recognise the cyclical approach to
maintenance

• document modifications with dates
and reasons for change

9.3 Developing a Solution Package

The project(s) in the HSC course is intended to reinforce the content covered in the
other topics in the course. Students need to experience working as part of a team,
as this is common in the computing field beyond school. In order to be able to
develop software successfully, students need to be able communicate well with
others and to act in a social and ethical way. The project is one area in which
students may be given these opportunities. The project(s) will build students’
understanding of the content dealt with in the other topics in the course and should
be undertaken throughout the duration of this course.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.2 differentiates between various methods used to construct software solutions
H1.3 describes how the major components of a computer system store and

manipulate data
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems
H4.3 applies a modular approach to implement well structured software solutions

and evaluates their effectiveness
H5.1 applies project management techniques to maximise the productivity of the

software development
H5.2 creates and justifies the need for the various types of documentation required

for a software solution
H5.3 selects and applies appropriate software to facilitate the design and

development of software solutions
H6.1 assesses the relationship between the roles of people involved in the software

development cycle
H6.2 communicates the processes involved in a software solution to an

inexperienced user
H6.3 uses a collaborative approach during the software development cycle
H6.4 develops effective user interfaces, in consultation with appropriate people.

49

Software Design and Development Stage 6 Syllabus

Software Design and Development Stage 6 Syllabus

50

Students learn about:

Designing and developing a software
solution to a complex problem
Defining the problem and its solution,
including:
• defining the problem

– identification of the problem
– idea generation
– communication with others involved

in the proposed system
• understanding

– interface design
– communication with others involved

in the proposed system
– representing the system using

diagrams
– selection of appropriate data

structures
– applying project management

techniques
– consideration of all social and

ethical issues
• planning and design

– interface design
– selection of software environment
– identification of appropriate

hardware
– selection of appropriate data

structures
– production of data dictionary
– definition of required validation

processes
– definition of files — record layout

and creation
– algorithm design
– inclusion of standard or common

routines
– use of software to document design
– identification of appropriate test data
– enabling and incorporating

feedback from users at regular
intervals

– consideration of all social and
ethical issues

– applying project management
techniques

Students learn to:

• define the problem and investigate
alternative approaches to a software
solution

• select an appropriate solution

• produce an initial Gantt chart

• use a logbook to document the
progress of their project

• document the software solution

• generate a fully documented design
for their project after communication
with other potential users

51

Software Design and Development Stage 6 Syllabus

Students learn about:

Systems implementation
Implementing the software solution by:
• implementation

– production and maintenance of
data dictionary

– inclusion of standard or common
routines

– use of software to document design
– translating the solution into code
– creating online help
– program testing
– reporting on the status of the

system at regular intervals
– applying project management

techniques
– enabling and incorporating

feedback from users at regular
intervals

– completing all user documentation
for the project

– consideration of all social and
ethical issues

– completing full program and
systems testing

• maintenance
– modifying the project to ensure an

improved solution

Students learn to:

• implement a fully tested and
documented software solution in a
methodical manner

• use project management techniques
to ensure that the software solution is
implemented in an appropriate time
frame

• communicate effectively with potential
users at all stages of the project to
ensure that it meets their
requirements

• ensure that relevant ethical and social
issues are addressed appropriately

9.4 Options

The option topic in this course extends students’ software development experiences
in one of two dimensions. Students selecting the Evolution of Programming
Languages option will broaden their understanding of the different types of
programming languages by looking at different approaches to programming
languages and the reasons for their development. Option 2 — The Software
Developer's View of the Hardware — extends students’ understanding of the layers
of software development by investigating the more detailed relationships between
hardware and software and how the hardware is used by the software to allow
specified instructions to be performed.

9.4.1 Option 1 — Evolution of Programming Languages

This topic offers students the opportunity to look at approaches utilised by the
different types of programming languages. Each of these was developed in an
attempt to improve programmer productivity. By focusing on each of the different
paradigms, students should gain an insight into how effective each approach has
been, together with an understanding of the specific areas where the use of a
particular paradigm could be particularly appropriate. This understanding will
broaden the students’ experience of different paradigms and will also offer them a
wider choice from which to select an appropriate approach to solve a specific
problem.

Outcomes

A student:
H1.2 differentiates between various methods used to construct software solutions
H2.1 describes the historical developments of different language types
H2.2 explains the relationship between emerging technologies and software

development
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H4.1 identifies needs to which software solutions are appropriate
H4.2 applies appropriate development methods to solve software problems

Software Design and Development Stage 6 Syllabus

52

53

Software Design and Development Stage 6 Syllabus

Students learn about:

Historical reasons for the
development of the different
paradigms
• a need for greater productivity
• recognition of repetitive standard

programming tasks
• a desire to solve different types of

problems (eg AI)
• the recognition of a range of different

basic building blocks
• emerging technologies

Basic building blocks
• variables and control structures

(imperative)
• functions (functional)
• facts and rules (logic)
• objects, with data and methods or

operations (object oriented)

Effect on programmers’ productivity
• speed of code generation
• approach to testing
• effect on maintenance
• efficiency of solution once coded
• learning curve (training required)

Paradigm specific concepts
• logic paradigm

– (eg Prolog, expert system shells)
– heuristics
– goal
– inference engine
– backward/forward chaining

• object oriented programming
– (eg C++, Delphi, Java)
– methods
– classes
– inheritance
– polymorphism
– encapsulation
– abstraction

• functional (eg LISP, APL)
– functions

Students learn to:

• recognise representative fragments of
code written in a particular paradigm

• differentiate between the different
paradigms

• evaluate the effectiveness of each
paradigm in meeting its perceived
need

• identify an appropriate paradigm
relevant for a given situation

• interpret a fragment of code, and
identify and correct logic errors

• modify fragments of code written
using an example of a particular
paradigm to reflect changed
requirements

• for current and emerging languages,
identify an appropriate paradigm

Software Design and Development Stage 6 Syllabus

54

Students learn about:

Representation of data within the
computer
• character representation, namely:

– ASCII
– hexadecimal

• integer representation, including:
– sign and modulus
– one’s complement
– two’s complement

• representation of fractions, namely:
– floating point or real

• binary arithmetic, including:
– addition
– subtraction using two’s complement

representation
– multiplication, shift and add
– division, shift and subtract

Students learn to:

• convert integers between binary and
decimal representation

• interpret the binary representation of
data

• recognise situations in which data can
be misinterpreted by the software

• perform arithmetic operations in
binary

9.4.2 Option 2 — The Software Developer’s View of the Hardware

This topic looks in much more depth at how the hardware is utilised by the software
instructions to achieve the desired outcomes. In the section, Implementation of
Software Solutions, students are introduced to how the CPU processes instructions.
This topic allows students to investigate further how the basic arithmetic processes
and storage of data is performed by electronic circuitry. Students should recognise
that the design of such circuitry follows the same cyclic process as that of the
design of software — once the problem has been identified, an appropriate solution
is designed and tested. A completed circuit can be modified to meet changing
requirements and all solutions should be documented and subsequently evaluated.

Outcomes

A student:
H1.1 explains the interrelationship between hardware and software
H1.3 describes how the major components of a computer system store and

manipulate data
H3.1 identifies and evaluates legal, social and ethical issues in a number of contexts
H3.2 constructs software solutions that address legal, social and ethical issues
H4.1 identifies needs to which software solutions are appropriate.

55

Software Design and Development Stage 6 Syllabus

Students learn about:

Electronic circuits to perform
standard software operations
• logic gates, including:

– AND, OR, NOT, NAND, NOR, XOR
• truth tables
• circuit design steps

– identify inputs and outputs
– identify required components
– check solution with a truth table
– evaluate the circuit design

• specialty circuits, including:
– half adder
– full adder
– flip-flops as a memory store

Programming of hardware devices
• the input data stream from sensor and

other devices
– header information
– data characters
– trailer information
– control characters
– hardware specifications
– documentation

• processing of data stream
– the need to recognise and strip

control characters
– counting the data characters
– extracting the data

• generating output to an appropriate
output device
– required header information
– required control characters
– data
– required trailer information

• control systems
– responding to sensor information
– specifying motor operations

• printer operation
– control characters for features,

including page throw, font change,
line spacing

• specialist devices with digital input
and/or output

Students learn to:

• generate truth tables for a given circuit
• describe the purpose of a circuit from

its truth table
• design a circuit to solve a given

problem and use a truth table to verify
the design

• explain how a flip-flop can be used in
the storage and shifting of a bit in
memory

• build and test a circuit using integrated
circuits or use a software package

• simulate the testing of a circuit for
both user-designed circuits and the
specialty circuits

• recognise the cyclical approach to
circuit design

• modify an existing circuit design to
reflect changed requirements

• interpret a data stream for a device
for which specifications are provided

• generate a data stream to specify
particular operations for a hardware
device, for which specifications are
provided

• modify a stream of data to meet
changed requirements, given the
hardware specifications

• cause a hardware device to respond
in a specified fashion

10 Course Requirements

The Software Design and Development Stage 6 Syllabus includes a Preliminary
course of 120 hours (indicative time) and an HSC course of 120 hours (indicative
time).

There is no prerequisite study for the Preliminary course. Completion of the
Preliminary course is a prerequisite for the HSC course.

It is a mandatory requirement that students spend a minimum of 20% of Preliminary
course time on practical activities using the computer, and 25% of HSC course time
on practical activities using the computer.

Software Specifications and Methods of Algorithm descriptions prescribed for
Software Design and Development Stage 6

There are Software Specifications and Methods of Algorithm descriptions prescribed
for Software Design and Development Stage 6 Preliminary and HSC courses.
These are published on the Board of Studies website
(www.boardofstudies.nsw.edu.au) following initial publication in an edition of the
Board Bulletin.

Software Design and Development Stage 6 Syllabus

56

11 Post-school Opportunities

The study of Software Design and Development Stage 6 provides students with
knowledge, understanding and skills that form a valuable foundation for a range of
courses at university and other tertiary institutions.

In addition, the study of Software Design and Development Stage 6 assists students
to prepare for employment and full and active participation as citizens. In particular,
there are opportunities for students to gain recognition in vocational education and
training. Teachers and students should be aware of these opportunities.

Recognition of Student Achievement in Vocational Education and
Training (VET)

Wherever appropriate, the skills and knowledge acquired by students in their study
of HSC courses should be recognised by industry and training organisations.
Recognition of student achievement means that students who have satisfactorily
completed HSC courses will not be required to repeat their learning in courses at
TAFE NSW or other Registered Training Organisations (RTOs).

Registered Training Organisations, such as TAFE NSW, provide industry training
and issue qualifications within the Australian Qualifications Framework (AQF).

The degree of recognition available to students in each subject is based on the
similarity of outcomes between HSC courses and industry training packages
endorsed within the Australian Qualifications Framework. Training packages are
documents that link an industry’s competency standards to AQF qualifications. More
information about industry training packages can be found on the National Training
Information Service (NTIS) website (www.ntis.gov.au).

Recognition by TAFE NSW

TAFE NSW conducts courses in a wide range of industry areas, as outlined each
year in the TAFE NSW Handbook. Under current arrangements, the recognition
available to students of Software Design and Development in relevant courses
conducted by TAFE is described in the HSC/TAFE Credit Transfer Guide. This guide
is produced by the Board of Studies and TAFE NSW and is distributed annually to
all schools and colleges. Teachers should refer to this guide and be aware of the
recognition available to their students through the study of Software Design and
Development Stage 6. This information can be found on the TAFE NSW website
(www.tafensw.edu.au/mchoice).

Recognition by other Registered Training Organisations

Students may also negotiate recognition into a training package qualification with
another RTO. Each student will need to provide the RTO with evidence of
satisfactory achievement in Software Design and Development Stage 6 so that the
degree of recognition available can be determined.

57

Software Design and Development Stage 6 Syllabus

12 Assessment and Reporting

12.1 Requirements and Advice

The information in this section of the syllabus relates to the Board of Studies’
requirements for assessing and reporting achievement in the Preliminary and HSC
courses for the Higher School Certificate.

Assessment is the process of gathering information and making judgements about
student achievement for a variety of purposes.

In the Preliminary and HSC courses, those purposes include:
• assisting student learning
• evaluating and improving teaching and learning programs
• providing evidence of satisfactory achievement and completion in the

Preliminary course
• providing the Higher School Certificate results.

Reporting refers to the Higher School Certificate documents received by students
that are used by the Board to report both the internal and external measures of
achievement.

NSW Higher School Certificate results will be based on:
• an assessment mark submitted by the school and produced in accordance

with the Board’s requirements for the internal assessment program
• an examination mark derived from the HSC external examinations.

Results will be reported using a course report containing a performance scale with
bands describing standards of achievement in the course.

The use of both internal assessment and external examinations of student
achievement allows measures and observations to be made at several points and in
different ways throughout the HSC course. Taken together, the external examinations
and internal assessment marks provide a valid and reliable assessment of the
achievement of the knowledge, understanding and skills described for each course.

Standards Referencing and the HSC Examination

The Board of Studies will adopt a standards-referenced approach to assessing and
reporting student achievement in the Higher School Certificate examination.

The standards in the HSC are:
• the knowledge, skills and understanding expected to be learned by students —

the syllabus standards
• the levels of achievement of the knowledge, skills and understanding — the

performance standards.

Both syllabus standards and performance standards are based on the aims,
objectives, outcomes and content of a course. Together they specify what is to be
learned and how well it is to be achieved.

Software Design and Development Stage 6 Syllabus

58

Teacher understanding of standards comes from the set of aims, objectives,
outcomes and content in each syllabus together with:
• the performance descriptions that summarise the different levels of performance

of the course outcomes
• HSC examination papers and marking guidelines
• samples of students’ achievement on assessment and examination tasks.

12.2 Internal Assessment

The internal assessment mark submitted by the school will provide a summation of
each student’s achievements measured at points throughout the course. It should
reflect the rank order of students and relative differences between students’
achievements.

Internal assessment provides a measure of a student’s achievement based on a
wider range of syllabus content and outcomes than may be covered by the external
examination alone.

The assessment components, weightings and task requirements to be applied to
internal assessment are identified on page 61. They ensure a common focus for
internal assessment in the course across schools, while allowing for flexibility in the
design of tasks. A variety of tasks should be used to give students the opportunity to
demonstrate outcomes in different ways and to improve the validity and reliability of
the assessment.

12.3 External Examination

In Software Design and Development Stage 6, the external examination includes
written papers for external marking. The specifications for the examination in
Software Design and Development Stage 6 are on page 62.

The external examination provides a measure of student achievement in a range of
syllabus outcomes that can be reliably measured in an examination setting.

The external examination and its marking and reporting will relate to syllabus
standards by:
• providing clear links to syllabus outcomes
• enabling students to demonstrate the levels of achievement outlined in the

course performance scale
• applying marking guidelines based on established criteria.

59

Software Design and Development Stage 6 Syllabus

12.4 Board Requirements for the Internal Assessment Mark in
Board Developed Courses

For each course, the Board requires schools to submit an assessment mark for
each candidate.

The collection of information for the HSC internal assessment mark must not begin
prior to the completion of the Preliminary course.

The Board requires that the assessment tasks used to determine the internal
assessment mark must comply with the components, weightings and types of tasks
specified in the table on page 61.
Schools are required to develop an internal assessment program that:
• specifies the various assessment tasks and the weightings allocated to each

task
• provides a schedule of the tasks designed for the whole course.

The school must also develop and implement procedures to:
• inform students in writing of the assessment requirements for each course

before the commencement of the HSC course
• ensure that students are given adequate written notice of the nature and timing

of assessment tasks
• provide meaningful feedback on each student’s performance in all assessment

tasks
• maintain records of marks awarded to each student for all assessment tasks
• address issues relating to illness, misadventure and malpractice in assessment

tasks
• address issues relating to late submission and non-completion of assessment

tasks
• advise students in writing if they are not meeting the assessment requirements

in a course and indicate what is necessary to enable the students to satisfy the
requirements

• inform students about their entitlements to school reviews and appeals to the
Board

• conduct school reviews of assessments when requested by students
• ensure that students are aware that they can collect their Rank Order Advice at

the end of the external examinations at their school.

Software Design and Development Stage 6 Syllabus

60

12.5 Assessment Components, Weightings and Tasks

Assessment should include a range of tasks.

Preliminary Course

The suggested components, weightings and tasks for the Preliminary course are set
out below.

HSC Course

The internal assessment mark for Software Design and Development Stage 6 is to
be based on the HSC course only. Final assessment should be based on a range
and balance of assessment tasks.

While the allocation of weightings to the various tasks set for the HSC course is left
to individual schools, the percentages allocated to each assessment component
must be maintained. One task may be used to assess several components. It is
suggested that 3–5 tasks are sufficient to assess the HSC course outcomes.

Assessment Components Weighting Tasks

• knowledge and understanding 20% Tasks may include:
about development and impact • developing and modifying
of software solutions and the software solutions
software development cycle • interpreting and creating

• design and development 35% algorithms
of software solutions • maintaining student logbooks

• project management 20% • research assignments
techniques, including • debates
documentation, teamwork • oral presentation
and communication • case studies

• project(s) 25% • industry reports
• unit tests

Assessment Components Weighting Tasks

• knowledge and understanding 30% Tasks may include:
about hardware and software, • developing software
software development solutions
approaches, software • interpreting and creating
development processes, algorithms
social and ethical issues • maintaining student logbooks

• design and development 35% • research assignments
of software solutions • debates

• project management techniques, 15% • case studies
including documentation, • unit tests
teamwork and communication

• project(s) 20%

61

Software Design and Development Stage 6 Syllabus

12.6 HSC External Examination Specifications

No calculators may be used in the examination. Flowchart templates may be used.

Software Design and Development

Time allowed: 3 hours (plus 5 minutes reading time)

The paper is divided into THREE sections

Section I (20 marks)
• There will be TWENTY multiple-choice questions.
• All questions are compulsory.
• Questions will be based on all the topics: Development and Impact of Software

Solutions, Software Development Cycle, Developing a Solution Package.

Section II (60 marks)
• There will be THREE questions.
• All questions are compulsory.
• All questions are of equal value.
• Questions will be based on all of the topics: Development and Impact of

Software Solutions, Software Development Cycle, Developing a Solution
Package.

• All questions will consist of a number of parts requiring short structured
responses.

Section III (20 marks)
• There will be TWO questions, one question on each of the options: Evolution of

Programming Languages and Software Developer’s View of the Hardware.
• Candidates must attempt ONE question only.
• Both questions are of equal value.
• Both questions will consist of a number of parts requiring short structured

responses.

Software Design and Development Stage 6 Syllabus

62

12.7 Summary of Internal and External Assessment

Internal Assessment Weighting

• knowledge and 20
understanding about
development and
impact of software
solutions and the software
development cycle

• design and development 35
of software solutions

• project management 20
techniques, including
documentation,
teamwork and
communication

• project(s) 25

Marks 100

External Assessment Weighting

Section I
20 multiple-choice 20
questions relating to:

– Development and
Impact of Software
Solutions

– Software Development
Cycle

– Developing a Solution
Package

Section II
Three short structured 60
response questions
relating to:

– Development and
Impact of Software
Solutions

– Software Development
Cycle

– Developing a Solution
Package

Section III
Students select one 20
question from either:

– Evolution of
Programming
Languages

OR
– Software Developer’s

View of the Hardware

Marks 100

63

Software Design and Development Stage 6 Syllabus

12.8 Reporting Student Performance Against Standards

Student performance in an HSC course will be reported against standards on a
course report. The course report includes a performance scale for the course
describing levels (bands) of achievement, an HSC examination mark and the
internal assessment mark. It will also show, graphically, the statewide distribution of
examination marks of all students in the course.

Each band on the performance scale (except for band 1) includes descriptions that
summarise the attainments typically demonstrated in that band.

The distribution of marks will be determined by students’ performance against the
standards and not scaled to a predetermined pattern of marks.

Software Design and Development Stage 6 Syllabus

64

65

Software Design and Development Stage 6 Syllabus

13 Glossary

Syllabus specific terms. These terms are provided to assist teachers to interpret the
syllabus but are in no way intended for examination purposes.

abstraction The hiding of detail by the presentation of a more general
instance. In the programming environment, an example of this is
the use of a subroutine, rather than the inclusion of detailed code

backwards/ The process of arriving at a conclusion from a stated set of
forwards chaining conditions. Backwards chaining assumes that a particular

solution is true and then ask questions to verify that the
necessary conditions are present. Forward chaining starts from
the beginning of the facts and rules and asks questions to
determine which path to follow next to arrive at a conclusion

benchmarking A method used to measure the performance of a system or
application by running it under closely controlled conditions

BNF Backus Naur Format — a metalanguage used to specify the
syntax of commands in a given language

breakpoints A method used in software debuggers to denote a point at
which the program is to temporarily halt execution. The
programmer can examine or change the contents of variables
at this point and then resume execution if appropriate

CASE tools Computer Aided Software Engineering — a range of software
that is used to assist the developer with a variety of tasks
required as part of the development process

class The definition of the common characteristics of a group of
objects, which can be used as a ‘template’ for these objects.
Objects of the same class have the same basic definition for
their processes and data

decompilation The process of taking executable machine code and
generating the equivalent assembler code, so that it is more
easily understood by a human. This process is often necessary
when the executable code needs to be modified and the
programmer does not have access to the source code

driver A specially written routine that generates appropriate test data
used to test a lower level module before the higher level
modules are completed

EBNF Extended Backus Naur Format — a more sophisticated
metalanguage used to specify the syntax of commands
available in a given language

encapsulation The isolation of an object from its environment, so that changes
to objects can be made without affecting other parts of the
system, as long as the interface to that object remains the same

end user A process in which an application is developed by users who
development have knowledge of a relevant software package and can

customise it to meet their needs

heuristics Rules of thumb that generally leads to a correct conclusion,
but which may never be able to be proved

inclusivity A recognition of equal access

incremental A translation process used with an interpreter in which
compilation commonly executed routines are translated separately into

machine code and called directly as required

inference engine The logic used by expert system software to draw conclusions
from stated facts and relevant rules

metalanguage A means of specifying the syntax of each of the valid
commands in a given language

method The specification of a particular process to be performed on or
by an object

object In an object oriented programming environment, this refers to
the data structures and procedures that apply to a specific unit
in the system

operation In an object oriented programming environment, this refers to
the method or process to be performed on or by an object

paradigm A model, used in this context to refer to a type of programming
language

polymorphism The concept that allows different objects to be used or
presented in different ways at run time, depending on the
users’ requirements at the time

quality assurance A set of procedures used to certify that a generated product
meets specified criteria with respect to quality and reliability

rapid application A process in which a programmer makes use of software
development packages to quickly build applications to meet the users’ needs

reverse The process of analysing an existing system to identify its
engineering components and their interrelationships, to allow the creation

of a similar system

sentinel value A value used to signify the end of a data list, such as ‘ZZZ’ or
99999

structured An approach used with project teams, where each developer
walkthrough working on a project steps the other members of the team

through the work they have completed so far. It is used to
ensure consistency of approach and assists in ensuring the
overall quality of the project as a whole

Software Design and Development Stage 6 Syllabus

66

	Software Design and Development Stage 6 Syllabus
	Contents
	1 The Higher School Certificate Program of Study
	2 Rationale for Software Design and Development in the Stage 6 Curriculum
	3 Continuum of Learning for Software Design and Development Stage 6 Students
	4 Aim
	5 Objectives
	6 Course Structure
	7 Objectives and Outcomes
	7.1 Table of Objectives and Outcomes
	7.2 Key Competencies

	8 Content: Software Design and Development Stage 6 Preliminary Course
	8.1 Concepts and Issues in the Design and Development of Software
	8.2 Introduction to Software Development
	8.3 Developing Software Solutions

	9 Content: Software Design and Development Stage 6 HSC Course
	9.1 Development and Impact of Software Solutions
	9.2 Software Development Cycle
	9.3 Developing a Solution Package
	9.4 Options

	10 Course Requirements
	11 Post-school Opportunities
	12 Assessment and Reporting
	12.1 Requirements and Advice
	12.2 Internal Assessment
	12.3 External Examination
	12.4 Board Requirements for the Internal Assessment Mark in Board Developed Courses
	12.5 Assessment Components,Weightings and Tasks
	12.6 HSC External Examination Specifications
	12.7 Summary of Internal and External Assessment
	12.8 Reporting Student Performance Against Standards

	13 Glossary

	Nav Tip to show BM: Tip: Click on the BOOKMARKS TAB to show / hide navigation
	Syllabus text: This syllabus is current as of January 2003. The Office of the Board of Studies NSW website may have a more current version available to download.
	BOS web link:

