Marks

2

Question 5 (15 marks) Use a SEPARATE writing booklet.

- (a) The equation $4x^3 27x + k = 0$ has a double root. Find the possible values of k. 2
- (b) Let α , β , and γ be the roots of the equation $x^3 5x^2 + 5 = 0$.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 1$, $\beta 1$, and $\gamma 1$.
 - (ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 , and γ^2 .

(iii) Find the value of
$$\alpha^3 + \beta^3 + \gamma^3$$
.

The ellipse \mathcal{E} has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and focus *S* and directrix \mathcal{D} as shown in the diagram. The point $T(x_0, y_0)$ lies outside the ellipse and is not on the *x* axis. The chord of contact *PQ* from *T* intersects \mathcal{D} at *R*, as shown in the diagram.

(i) Show that the equation of the tangent to the ellipse at the point $P(x_1, y_1)$ is 2

$$\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1$$

(ii) Show that the equation of the chord of contact from T is

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

(iii) Show that TS is perpendicular to SR.

3

2

D OF STUDIES (a) Let $P(x) = 4x^3 - 27x + k$ $P'(x) = 12x^2 - 27$ $12\chi^{2} - 27 = 0$ $\chi^2 = \frac{27}{12}$ $\chi = \pm \sqrt{\frac{27}{12}}$ $\chi = \sqrt{\frac{27}{12}}$ $4 \cdot \frac{27}{12} \cdot \frac{27}{12} - 27 \cdot \frac{27}{22} + k = 0$ $k = 18 \int_{12}^{27}$ $x = -\sqrt{\frac{27}{12}} + \frac{27}{12}\sqrt{\frac{27}{12}} + 27\sqrt{\frac{27}{12}} + k = 0$ $k = -18, \frac{27}{17}$ $k = \pm 18$, $\frac{27}{17}$ (b) Let $P(x) = x^3 - 5x^2 + 5$ $P(x+1) = (x+1)^3 - 5(x+1)^2 + 5$ (i) $(x+1)^{3} - 5(x+1)^{2} + 5 = 0$ $x^{3} + 3x^{2} + 3x + 1 - 5x^{2} - 10x - 5 + 5 = 0$ $x^{3} - 2x^{2} - 7x + 1 = 0$ (ii) $P(Jx) = (Jx)^3 - 5(Jx)^2 + 5$ $x \int x - 5 x + 5 = 0$ x5x = 5x - 5 $\chi^{3} = 25\chi^{2} - 50\chi + 25$ $x^{3} - 25x^{2} + 50x - 25 = 0$

02/WB8

 $(iii) \quad x + \beta + \gamma = 5$ $\alpha \beta + \beta \gamma + \gamma \alpha = 0$ $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha \beta + \beta \gamma + \gamma \alpha)$ $= 5^2 - 0$ = 25 $\alpha^3 = 5\alpha^2 - 5$ $B^3 = 5B^2 - 5$ $\gamma^3 = 5\gamma^2 - 5$ $\alpha^{3} + \beta^{3} + \gamma^{3} = 5(\alpha^{2} + \beta^{2} + \gamma^{2}) - 15$ = 5×25 -15 = 1/0 $(c)(i) \frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{2x}{a^2} \times \frac{b^2}{2y}$ $\frac{dy}{dx} = -\frac{2x}{a^2} \times \frac{b^2}{2y}$ $= -\frac{b^2 x}{a^2 y}$ $= -\frac{b^2 x_1}{a^2 y}, \text{ at } P$ Tangent at P $y - y_{,} = -\frac{b^2 x_{,}}{a^2 y_{,}} (x - x_{,})$ $\frac{y_{1}y}{b^{2}} - \frac{y_{1}^{2}}{b^{2}} = -\frac{x_{1}x}{a^{2}} + \frac{x_{1}^{2}}{a^{2}}$ $\frac{x_{1}x}{a^{2}} + \frac{y_{1}y}{b^{2}} = \frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{a^{2}}$ $\frac{\chi_{,\chi}}{h^2} + \frac{y_{,y}}{h^2} = 1$ since P lies on E

(ii) Since T(xo, 40) lies on this $\frac{\chi_{1}\chi_{0}}{a^{2}} + \frac{y_{1}y_{0}}{b^{2}} = 1$ Which means P(x, y,) lies on $\frac{\chi_{0X}}{a^{2}} + \frac{y_{0}y}{b^{2}} = 1$ Similarly tongent at Q (X2, y2) is $\frac{X_2 X}{a^2} + \frac{y_2 y}{b^2} = 1$ Since $T(x_0, y_0)$ lies on this $\frac{\chi_1 \chi_0}{a^2} + \frac{y_2 y_0}{b^2} = 1$ And Q his on $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} + 1$ Since only one line pass through both P + Q, this must be chord PQ. (iii) Let S be (ae, 0) $\downarrow R$ be $(\frac{a}{2}, y_{4})$ Langent atchord PQ meets D at $\frac{\chi_0}{a^2} \cdot \frac{q}{e} + \frac{y_0 y}{b^2} = 1$ $\frac{\chi_0}{ae} + \frac{y_0y}{b^2} = 1$ $y_{4} = \frac{b^{2}}{y_{0}} \left(1 - \frac{\chi_{0}}{ae} \right)$ Gradient of TS $M_{TS} = \frac{y_0 - 0}{x_0 - ae}$

02/W88

OF STUDIES Gradient of SR: $M_{SP} = \frac{b^2}{y_0} \left(-\frac{\chi_0}{ak} \right) = 0$ <u>a</u> - ae <u>b</u>² (<u>ae-xo</u>) <u>yo</u> (<u>ae</u>) 2 a-ae² e $= \frac{b^{2}(ae - x_{o})}{y_{o}a^{2}(1 - e^{2})}$ = $ae - x_0$ since $b^2 = a^2(1-e^2)$ yo M_{Ts} × M_{sp} = <u>y</u>o × <u>ae-xo</u> xo-ae <u>y</u>o - 1 -TS I SR