
Question 8 (15 marks) Use a SEPARATE writing booklet.

(a) Let m be a positive integer.

(i) By using De Moivre’s theorem, show that

(ii) Deduce that the polynomial

has m distinct roots

.

(iii) Prove that

.

(iv) You are given that .

Deduce that

.

Question 8 continues on page 14
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Question 8 (continued)

In the diagram, AB and CD are line segments of length 2a in horizontal planes
at a distance 2a apart. The midpoint E of CD is vertically above the midpoint F
of AB, and AB lies in the South–North direction, while CD lies in the West–East
direction.

The rectangle KLMN is the horizontal cross-section of the tetrahedron ABCD at
distance x from the midpoint P of EF (so PE = PF = a).

(i) By considering the triangle ABE, deduce that KL = a − x, and find the
area of the rectangle KLMN.

(ii) Find the volume of the tetrahedron ABCD.

End of paper
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