HSC 2002 - Mathematics Extension 2

Marks
Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) Letm be a positive integer.
(1) By using De Moivre’s theorem, show that 2
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...+ (=) "sin?M1g,
(11) Deduce that the polynomial 3
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1 3
has m distinct roots
o, = cotz(k—”) wherek=1,2,...,m
K 2m+1 B
(i11) Prove that 2
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(iv)  You are given that cotf < r for 0<6< 5 2

Deduce that
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Question 8 continues on page 14
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Marks
Question 8 (continued)
(b)
A
In the diagram, AB and CD are line segments of length 2a in horizontal planes
at a distance 2a apart. The midpoint E of CD is vertically above the midpoint
of AB, and AB lies in the South—North direction, while CD lies in the West—East
direction.
The rectangle KLMN is the horizontal cross-section of the tetrahedron ABCD at
distance x from the midpoint P of EF (so PE = PF = a).
(i) By considering the triangle ABE, deduce that KL=a—x, and find the 4
area of the rectangle KLMN.
(i1)) Find the volume of the tetrahedron ABCD. 2
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