
2

Question 5 (15 marks) Use a SEPARATE writing booklet.

- (a) The equation $4x^3 27x + k = 0$ has a double root. Find the possible values of k.
- (b) Let α , β , and γ be the roots of the equation $x^3 5x^2 + 5 = 0$.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 1$, $\beta 1$, and $\gamma 1$.
 - (ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 , and γ^2 .
 - (iii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$.

The ellipse \mathcal{E} has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and focus S and directrix \mathcal{D} as shown in the diagram. The point $T(x_0, y_0)$ lies outside the ellipse and is not on the x axis. The chord of contact PQ from T intersects \mathcal{D} at R, as shown in the diagram.

(i) Show that the equation of the tangent to the ellipse at the point $P(x_1, y_1)$ is 2

$$\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1.$$

(ii) Show that the equation of the chord of contact from T is

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1.$$

(iii) Show that TS is perpendicular to SR.